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ABSTRACT: A Bayesian Normal Homogeneity Test (BNHT) for the detection of artificial discontinuities in climatic series
is presented. The test is simple to use and allows the integration of prior knowledge on the date of change from various
sources of information (e.g. metadata or expert belief) in the analysis. The performance of the new test was evaluated on
synthetic series with similar statistical properties as observed total annual precipitation in the southern and central parts
of the province of Quebec, Canada. Different priors were used to investigate the sensitivity of the test to the choice of
priors. It was found that (1) high-prior probability of no change yields low false detection rates on the homogeneous series;
(2) the test has a very high power of detection on series with a single shift (the best power of detection if compared with
previous methods applied to the same synthetic series); (3) shifts having a small magnitude are detectable with a low
prior probability of no change and (4) when applied to series with multiple shifts with a segmentation procedure and a
high probability of no change, the test proved to be performing well in detecting multiple shifts (as performing as the
best techniques previously applied to the same synthetic series). An example of application to total annual precipitation in
Quebec City, Canada is also presented to illustrate (1) a case for which the results are not affected by the choice of the
prior parameters and (2) a case for which information about potential changes found in the metadata was integrated in the
analysis and allowed the detection of a change that would not have been detected with a non-informative prior. Copyright
 2009 Royal Meteorological Society
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1. Introduction

Raw climatic series are likely to exhibit artificial shifts
due to modifications in the measurement procedures
of the stations (e.g. relocation of a station, change of
observer, modification in the immediate environment of
the site, and so on). If left uncorrected, these artificial
shifts may introduce a bias in climate studies such as
trend or extreme value analysis. The problems induced
by these artificial shifts in climatic data are the motiva-
tion for developing homogenisation techniques that are
able to detect and correct these artificial shifts. For a
comprehensive review of all these techniques, the reader
is referred to Peterson et al. (1998), Aguilar et al. (2003),
Beaulieu et al. (2007) and Reeves et al. (2007).

Homogenisation techniques can detect artificial
changes by looking at metadata (history of the station),
at relative variations with respect to neighbour series or
at both of them. Other approaches such as side by side
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comparisons of instruments, statistical studies of instru-
ment changes or use of a single station can also be used
(Peterson et al., 1998; Aguilar et al., 2003), but are not
discussed in this paper. Specific information contained
in the metadata can provide the researcher with valu-
able knowledge of when a discontinuity is likely to have
occurred and what may have caused it. Unfortunately,
metadata is not always available and sometimes incom-
plete. Therefore, techniques that do not rely entirely on
the metadata but can incorporate it in the analysis when
available are desirable.

Neighbour series are often used in homogenisation to
represent the regional climate. They are used to iso-
late the real regional climate change from the inhomo-
geneities that are present in the base series (i.e. series to
be tested for homogeneity). Homogenisation techniques
based on a comparison of the base series with neigh-
bour series are presented, for example, in Potter (1981),
Alexandersson (1986), Easterling and Peterson (1995),
Vincent (1998), Szentimrey (1999) and Caussinus and
Mestre (2004). When using such methods, metadata may
be consulted independently of the analysis to identify
the potential causes of inhomogeneities. However, an
ideal method would simultaneously use information from
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both metadata and neighbour series in the analysis to
minimise the risk of false detection and increase the
power of detection of inhomogeneities. Bayesian
approaches provide a straightforward framework to com-
bine all available sources of information (metadata,
expert knowledge) or lack of information (metadata miss-
ing or incomplete) through a prior distribution about the
phenomenon being studied. The information provided by
the prior distribution is updated with the observations
to give a posterior distribution, which is used to make
inference about the parameters of the data model (in the
present work: the changepoint location).

Some Bayesian techniques were applied to detect
inhomogeneities in temperature and precipitation series
in previous comparative studies (Ducré-Robitaille et al.,
2003; DeGaetano, 2006; Beaulieu et al., 2008, 2009). The
technique presented in Lee and Heghinian (1977) and
Perreault et al. (1999) was used to detect inhomogeneities
in synthetic temperature series (Ducré-Robitaille et al.,
2003; DeGaetano, 2006). The technique developed by
Rasmussen (2001) was applied to detect inhomogeneities
in synthetic precipitation series (Beaulieu et al., 2008).
The techniques developed in Seidou et al. (2007) and
Seidou and Ouarda (2007) were also applied to synthetic
precipitation series. None of these approaches led to a
good overall performance which can be defined by a
small false detection rates in homogeneous series and a
high power of detection in series with one or multiple
shifts (Beaulieu et al., 2009). These techniques were
applied with non-informative priors because they were
compared with classical homogenisation techniques. This
can disadvantage the Bayesian approach, especially when
additional information is available.

The general objective of this work is to present a
new Bayesian Normal Homogeneity Test (BNHT) to
detect inhomogeneities in climatic series. The specific
objectives of this work are (1) to verify if the proposed
Bayesian technique seems promising for the homogeni-
sation of precipitation series, (2) to study its sensitivity to
the choice of the prior distribution and (3) to present an
application of the technique to real series. The proposed
technique was originally developed by Lee (1998) to
detect changes in the parameters of a distribution belong-
ing to the exponential family.

The remainder of this paper is organised as follows:
the BNHT is described in Section 2, the simulation study
is presented in Section 3, the results are presented in
Section 4, the real data series is analysed in Section
5 and finally, a discussion and some conclusions are,
respectively, presented in Sections 6 and 7.

2. Description of the technique

2.1. Bayesian approach

Given a prior distribution π which summarises the infor-
mation about the parameter θ and a vector of observations
x having a probability density f (x|θ), the Bayes theorem
allows to actualise π(θ) with the observations:

π(θ |x) = f (x|θ)π(θ)∫
f (x|θ)π(θ)dθ

(1)

The choice of the prior distribution can be either informa-
tive or non-informative. The knowledge about the phe-
nomenon can be expressed through an informative prior.
The lack of information and the associated uncertainty
can be included by using a non-informative prior dis-
tribution. Parameters estimation can be performed with
different Bayesian parametric estimators such as the pos-
terior mean, median or mode. However, the posterior
mode is preferred for hypothesis testing (Robert, 1992).

2.2. Bayesian normal homogeneity test

The technique used in this work is the normal case of a
general changepoint technique which allows the detection
of a change in the parameter of a distribution belonging
to the natural exponential family (Lee, 1998). This prob-
lem has also been addressed in the Bayesian framework
by Kander and Zacks (1966), Smith (1975) and Ghorban-
zadeh and Lounes (2001). However, the approach of Lee
(1998) was used because it is the most recent presenting
the special case of a changepoint detection in the mean
of a normally distributed time series, which is the case of
interest in this paper. The general approach of Lee (1998)
is presented in the Appendix.

The BNHT test, presented herein, enables the detection
of a change in the mean of a single normally distributed
time series. In order to account for neighbour series, the
BNHT may be applied to a series of ratios or differences
between the base series and neighbour series as proposed
in Alexandersson (1986). The changepoint model can be
represented by:

xi ∼
{

N(µ1, σ
2) i = 1, . . . , k

N(µ2, σ
2) i = k + 1, . . . , n

(2)

where xi represents the ith observation in the series of
ratios/differences, µ1 and µ2 are the mean of the series
before and after the shift, σ 2 is the variance of the series
that is assumed to be known, k represents the position
of the change and n is the number of observations. The
observations must be independent. The hypothesis that
there is no change in the mean is tested against the
hypothesis that there is a change in the mean at time k:

H0 : k = n

H1 : 1 ≤ k ≤ n − 1 (3)

Hence, k = n represents the case where no change has
occurred in the series, while k �= n represents the case
where a change has occurred at position k. The prior
probability distribution for k is given by:

g0(k) =
{

p k = n
1 − p
n − 1 1 ≤ k ≤ n − 1

(4)
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The following prior probability distribution for k, g1(k)

is proposed instead of the original one presented in Equa-
tion (4):

g1(k) =



p k = n
1 − p

n − a − b − 1 a < k < n − b

0 otherwise

(5)

where p is the prior probability of no change, a and b

represent the support of the distribution. When a and b

are set to 0, Equation (5) is equivalent to Equation (4).
When a and b are different from 0, the position of the
shift is constrained between positions a and n − b. The
latter type of prior distribution is often used in the liter-
ature because it allows the user to set the range where
a change has to be detected. It also allows reducing the
problem of high-false detection rates at the beginning
or end of the time series, as pointed out in Wang et al.
(2007). A similar prior distribution was used by Hol-
bert (1982) for changepoint detection in a multiple linear
regression model.

Conjugate priors are used for the means before and
after the changepoint: µ1 and µ2 were assumed to have
N(c/σ 2, 1/mσ 2) distribution. Lee (1998) found that the
ML-II hyperparameters c and m are ĉ1k = xn and m̂1k =
n for the case k = n. When k �= n, the ML-II hyperpa-
rameters are, respectively, ĉ1k = xk , m̂1k = k, ĉ2k = x∗

k

and m̂2k = n − k for the means before and after the shift.
The posterior distribution of k given the vector of obser-
vations x is:

π(k|x) ∝ g1(k) · L(x|k) (6)

L(x|k) =




exp
{
−

n∑
i=1

(xi − xn)
2

2σ 2

}
k = n

exp




−
[

k∑
i=1

(xi − xk)
2 +

n∑
i=k+1

(xi − x∗
k)

2

]

2σ 2




k �= n

(7)

The variance can be estimated by the pooled sample
variances (Lee, 1998):

σ̂ 2
p = min

1≤k<n

[
k∑

i=1

(xi − xk) +
n∑

i=k+1

(
xi − x∗

k

)] /
(n − 2)

(8)

The use of the pooled sample variance has also been sug-
gested by Reeves et al. (2007) to improve the Standard
Normal Homogeneity Test (Alexandersson, 1986). The
motivation of using the pooled variance is that in the
presence of a changepoint, the overall sample variance
σ̂ 2 is biased and is an inconsistent estimator of σ 2, and
in which case, the variance should be estimated by σ̂ 2

p .

Another prior distribution that could have been used for
the position of the change is the triangular distribution:

g2(k) =




p k = n
2(1 − p)(k − a)
(e − a)(d − a)

a ≤ k ≤ d

2(1 − p)(e − k)
(e − a)(e − d)

d ≤ k ≤ e

0 otherwise

(9)

where d represents the most probable position of the shift
(the mode of the distribution) and a and e represent the
support of the distribution (a < d < e < n). This uniform
distribution could be used instead of the uniform in the
case where the date of change is known. This would be
more informative about the position of the change. In this
case, the posterior distribution of k given x would be:

π(k|x) ∝ g2(k) · L(x|k) (10)

The above prior distributions for the changepoint posi-
tion were proposed because they lead to analytical expres-
sion for the posterior distribution and they can easily be
used to integrate metadata in the analysis. Some examples
of alternative prior distributions can be found in Ghor-
banzadeh and Lounes (2001).

More generally, prior distributions can be chosen
according to expert’s belief and/or careful review of
available metadata. For example, if a potential change-
point causing event is documented in the metadata, the
prior probability of no change (p) should be smaller than
0.5. If the metadata is complete and no change is docu-
mented, the probability that a change occurred is small
and then, p should be set higher than 0.5. If the user
does not have enough information about the probability
of change or no change, a common practice is to set
p to 0.5, giving the same prior probability for the two
possibilities. Similarly, if the metadata indicates that a
change occurred during a given period, parameters a, b

and e can be chosen to restrict the detection to this spe-
cific period. Finally, if the metadata indicates the specific
date of change, parameter d can be chosen to attribute a
higher probability of change to this date.

The absence/presence of a shift and its position can
be inferred from the posterior distribution as the position
corresponding to the highest posterior probability (pos-
terior mode). If the mode of the posterior distribution is
n, it means that there is no change in the series. If the
mode of the posterior distribution is k(k �= n), it seems
that there is a shift in the mean at position k. A credi-
bility interval for the position can be computed as well.
Figure 1 illustrates how a credibility interval is computed.
In this example, the most probable position of the shift is
30. It corresponds to the maximum a posteriori (MAP).
The 95% credibility interval is [23, 38]. This means that
there is a probability of 0.95 that the shift occurs between
positions 23 and 38. A multimodal posterior probability
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Figure 1. Illustration of the concept of credibility interval.

distribution and a discontinuous credibility interval would
indicate that there might be multiple shifts.

If an inhomogeneity is detected, the base series can
be corrected using the same approach as presented in
Alexandersson (1986):

(1) for ratios: multiply the observations in the series
before the change by the correction factor x∗

k

/
xk ,

where xk and x∗
k are, respectively, the mean of the

series of ratios before and after the change at posi-
tion k;

(2) for differences: add to the observations in the series
before the change the value

(
x∗

k − xk

)
.

3. Simulation study

3.1. Synthetic series

For comparison purposes, the BNHT was applied to the
same synthetic series of precipitation that was generated
for previous comparative studies of several homogenisa-
tion techniques (Beaulieu et al., 2008, 2009). To estimate
the statistical properties to reproduce with the model, a
set of stations located in central Quebec and surround-
ings having long time series with few missing data was
selected and their average characteristics were computed.
The statistical properties reproduced in these series are
(1) a mean total annual precipitation of 1089 mm, (2) a
standard deviation (SD) of 142 mm and (3) a lag one
autocorrelation of 0.02. Four different data sets were gen-
erated to represent the different cases that could occur
in the reality: homogeneous series, series with a single
shift and series with two and three shifts. The magnitude
and positions were generated randomly. The positions
are drawn from a truncated discrete uniform distribution
[11,n − 10]. The magnitudes are generated from a Beta
distribution and lie between −3 and 3 SDs. For each base
series, three correlated neighbour series were generated to
reproduce a spatial cross-correlation of 0.55. This value
is the mean spatial cross-correlation in the set of selected
stations that are located at a distance less than 300 km.

More details about the generation scheme of the synthetic
series are presented in Beaulieu et al. (2008).

3.2. Application of the technique

The BNHT was applied to the series of ratios between
the base series and the mean of the neighbour series. As
all neighbour series have the same correlation with the
base series, they all have the same weight in the series of
ratios. The BNHT was applied to all data sets by varying
the parameters of the prior distribution of the position
to study the sensitivity of the technique to the choice of
prior. As it is a simulation study, non-informative priors
for the position (Equation (5)) were used. For all data
sets, the posterior distributions were computed with dif-
ferent prior probabilities of no change (p): 0.01, 0.05,
0.10, 0.25, 0.5, 0.75, 0.90, 0.95 and 0.99. The parame-
ters a and b, used to set the interval of detection, were
set to different values according to the type of data set.
For the homogenous series, a and b were set to 0, 5, 10,
15 and 25, to allow the detection of a change in at least
half of the series length. For the other series, a and b

were set to 0, 5 and 10 only, as no shifts were introduced
in the first ten or last ten observations in the series. To
detect multiple shifts, the BNHT was applied recursively
using the same approach as used in Beaulieu et al. (2008,
2009): when a shift is detected, the series is divided into
two segments, the technique is reapplied to each seg-
ment, and this procedure is repeated until all segments
of the series are considered homogeneous or too short
to be tested. In Beaulieu et al. (2008, 2009), the tech-
niques were applied by ignoring the shifts detected in the
first or last ten observations. For the series with multi-
ple shifts, the techniques were applied with a minimum
length between two consecutive shifts set to ten obser-
vations. To be able to compare the results obtained with
the BNHT with those obtained in Beaulieu et al. (2008,
2009), the BNHT was applied using a and b set to 0.

3.3. Performance evaluation

To make the results comparable with those obtained in
Beaulieu et al. (2008, 2009), the same performance cri-
teria were used. For the homogeneous series, the perfor-
mance is assessed by computing the false detection rate,
which is the percentage of cases for which the homogene-
ity is rejected, while it is true. For the series with a single
shift, the number of well-positioned shifts (i.e. located
within ±2 years of the true position) is computed. For
the series with multiple shifts, the performance is evalu-
ated by penalising omissions, false detections and shifts
detected at a position different than the true position by
a criterion proposed by Beaulieu et al. (2008):

C =


1
nd

nd∑
i=1

(pd
i − pi)

2, nr = nd

1
nr [

nd∑
i=1

(pd
i −pi)

2+|nr−nd|(n−1)2], nr > nd

1
nd

[
nr∑

j=1
(pd

j − pj)
2 + |nr − nd|(n − 1)2], nr < nd

(11)
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where pd
i , i = 1, . . . , nd and pj , j = 1, . . . , nr represent,

respectively, the positions of the detected and real shifts,
nd is the number of detected shifts, nr is the number
of real shifts and n is the length of the series. The
pairs (pd

i , pj ) are chosen to minimise the criterion.
When the exact number of shifts is detected (nr =
nd), the criterion penalises for the distance between
the position of the real shift and the detected position.
When nr < nd or nr > nd , the criterion penalised each
shift omitted or falsely detected by adding (n − 1)2. The
best performance is obtained when C is equal to zero
(all shifts are correctly positioned or close to zero and
the detected shifts are located near the true positions).
When C is high, some shifts were not detected or falsely
detected. Following Beaulieu et al. (2008, 2009), the
criterion C was computed for all series with two and
three shifts and the overall performance is the mean of
the criterion over each set of synthetic series.

4. Results

4.1. False detection rates in the homogeneous series

Table I presents the false detection rates obtained with
different prior parameters. It can be seen that the tech-
nique is very sensitive to the prior probability of no
change (p). Hence, with a very low p (0.01), a false
detection occurs in about 100% of the synthetic series.
With a very high p (0.99), a false detection rarely occurs
(0.1–0.2% of false detection). With a less informative
p (0.5), the false detection rates lie between 6% and
8%. The technique seems less sensitive to the inter-
val of detection. When the shifts detected at the begin-
ning or end of the series are ignored, the percentage of
false detections is under 5% with a prior probability of
no change between 0.5 and 0.99. Figure 2 presents the
histograms of the positions of the falsely detected shifts
when the prior probability of no change is fixed to 0.25.
This figure shows that false detection rates display a typ-
ical U-shape. When a and b are set to 0, false detections

Table I. Percentage (%) of false detections in the homogeneous
series, with different prior probabilities of no change (p),
different prior parameters of the interval of detection (a,b) and

with a minimum segment length (segmin).

p a,b Segmin

0 5 10 15 20 25 10

0.01100 100 100 100 100 100 55.3
0.05 67.7 64.9 62.1 61.7 63.0 65.3 40.0
0.10 42.6 38.3 36.1 35.1 35.0 36.6 25.5
0.25 19.4 16.9 15.7 15.0 14.5 14.7 11.8
0.50 7.8 6.9 6.6 6.4 6.2 6.1 5.2a

0.75 3.2a 2.8a 2.8a 2.7a 2.7a 2.6a 2.1a

0.90 1.4a 1.2a 1.1a 1.0a 1.1a 1.0a 0.9a

0.95 0.7a 0.6a 0.5a 0.5a 0.5a 0.5a 0.4a

0.99 0.2a 0.1a 0.1a 0.1a 0.2a 0.1a 0.1a

a Significantly smaller than 5% (5% critical level).

at the beginning or end of the series increase. This effect
is reduced when the interval of detection is decreased
(when a and b are increased). Therefore, restricting the
detection at the beginning or end of the series is useful
in reducing the number of false detections, but does not
completely remove the U-shape effect.

4.2. Series with a single shift

Table II presents the percentage of well-positioned shifts
in the series with a single shift. With a low value of p,
the percentage of well-positioned shifts is around 93%.
With a very high value of p, the percentage of well-
positioned shifts is around 85%. When the shifts detected
at the beginning or end of the series are ignored, the
percentage of well-positioned shifts slightly diminishes.
Figure 3 presents the percentage of well-positioned shifts
according to their position and magnitude when the
parameters a and b are set to 0. As the results are very
similar for other values of a and b, it was not judged
necessary to present these figures. The percentage of
detection increases along with the magnitude of the shift.
Shifts having a high magnitude (more than 1 SD) are
almost always detected, even with high values of p.
The percentage of detection starts to decrease around
a magnitude of about 1 SD. Figure 3 also shows that
a low value of p (0.01) allows the detection of shifts
having a small magnitude that would not be detected
with a high value of p (0.99). The position of the shift
does not seem to have a high impact on the power of
detection.

4.3. Series with multiple shifts

Tables III and IV present the descriptive statistics of the
positioning criterion (C) computed from Equation (11)
for the series with two and three shifts. Figure 4 presents
the mean positioning criterion (C) for the series with
two and three shifts. The positioning criterion seems
to depend on the prior probability of no change and
on the choice of parameters to handle the detections at
the beginning or end of the series (Friedman’s test, 5%
critical level). With a minimum segment length of ten

Table II. Percentage (%) of well-positioned shifts in the series,
with a single shift with different prior probabilities of no change
(p), different prior parameters of the interval of detection (a,b)

and with a minimum segment length (segmin).

p a,b Segmin

0 5 10 10

0.01 92.5 92.8 93.1 91.5
0.05 92.1 92.3 92.6 91.3
0.10 91.5 91.6 91.9 90.8
0.25 90.5 90.6 90.8 90.0
0.50 89.6 89.7 89.9 89.2
0.75 88.5 88.6 88.8 88.2
0.90 87.4 87.5 87.7 87.1
0.95 86.6 86.8 86.9 86.4
0.99 84.9 85.0 85.1 84.7
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Figure 2. Histograms of the false detections in the homogeneous series when p is set to 0.25.

observations, the mean positioning criterion reaches its
minimum. When the prior probability of no change is
small (p < 0.5), the mean positioning criterion is high.
This is due to a large number of false detections. Hence,
when p is small, the mean number of shifts detected is
higher than the real number of shifts (Tables V and VI).
Furthermore, the risk of false detection increases as the
test is reapplied several times to the same series. When
the prior probability of no change is around 0.5–0.75,
the mean positioning criterion is the smallest (Figure 3).
With a high prior probability of no change (p > 0.9),
the mean positioning criterion seems to increase as p

increases. This is due to undetected shifts. Hence, when
p has a high value, the mean number of detected shifts
is smaller than the real number of shifts (Tables V and
VI). The prior probability of no change has less impact
when the BNHT is applied with a minimum length of ten
observations between two shifts. Finally, it seems that
it is better to set either a high value of p (0.5–0.95)
and a and b to ten or to set a minimum length of
ten observations between two shifts to detect multiple
shifts.

4.4. Previous results

Previous comparative studies of several homogenisation
techniques on the same synthetic series have been pre-
sented in Beaulieu et al. (2008, 2009). In these two
previous studies, the shifts detected at the beginning
or end of the series were ignored and a minimum of

ten observations was imposed between two consecu-
tive shifts. To be able to compare the BNHT with the
other techniques, it was applied using the same pro-
cedure. Furthermore, only the results obtained with a
p of 0.5 are compared, as it corresponds to the non-
informative case. The other Bayesian techniques com-
pared previously were also applied with non-informative
priors.

For the homogeneous series, the false detection rate
is significantly smaller than 5%, as with the majority
of the techniques presented in Beaulieu et al. (2008,
2009). For the series with a single shift, the percentage
of shifts positioned is 89.2% with a p of 0.5 and by
ignoring the shifts detected at the beginning or end of the
series. The highest percentage of well-positioned shifts
in Beaulieu et al. (2008, 2009) was 85.2%. By testing
the equality of these two proportions, it is found that
the percentage of well-positioned shifts is significantly
higher with the BNHT (rank-sum test, 5% critical level).
In Beaulieu et al. (2008, 2009), the best results in
the series with multiple shifts were obtained with the
Bayesian approach for multiple shifts (BAMS) developed
by Seidou and Ouarda (2007). These results were a mean
C of 1702 and a median C of 3 in the series with
two shifts, and in the series with three shifts, a mean
C of 2056 and a median C of 2453. The median C

obtained with the BNHT are not significantly different
than those obtained with BAMS (rank-sum test, 5%
critical level).
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Figure 3. Percentage of well-positioned shifts according to their position and magnitude when a and b are set to 0.

Table III. Descriptive statistics of the positioning criteria obtained in the series with two shifts, with different prior probabilities
of no change (p), different prior parameters of the interval of detection (a,b) and with a minimum segment length

(segmin)a.

p a,b Segmin

0 5 10 10

Mean Median SD Mean Median SD Mean Median SD Mean Median SD

0.01 7666.1 8167.5 1425.9 8199.0 8167.9 108.5 6551.6 6534.2 332.6 2692.2 3267.0 2146.1
0.05 7213.2 7840.8 1784.5 7529.7 8167.5 1447.2 5847.4 6534.0 1795.3 2533.7 3267.0 2164.5
0.10 5969.8 6534.7 2283.0 6184.5 6535.5 1948.8 4357.4 4900.8 2321.7 2080.2 1120.5 2148.4
0.25 3523.6 3547.3 2505.2 3867.6 4900.5 2262.9 2671.8 3267.0 2312.5 1675.1 6.5 2145.0
0.50 2326.5 3267.0 2387.6 2481.1 3267.0 2322.1 1928.3 22.5 2297.1 1610.3 2.0 2214.5
0.75 2041.8 13.0 2468.4 1982.8 12.5 2438.3 1754.6 2.0 2445.0 1710.6 2.0 2303.4
0.90 2071.9 4.5 2606.0 2000.6 4.5 2591.0 1882.0 2.0 2601.7 1871.0 2.0 2376.1
0.95 2158.1 4.5 2696.9 2100.8 4.5 2685.8 2018.1 2.0 2693.6 1979.8 2.0 2410.3
0.99 2422.6 8.0 2868.6 2381.2 4.5 2863.2 2325.7 2.5 2866.3 2215.8 4.5 2463.6

a The prior probability of no change and the choice of parameters to handle the detections at the beginning or end of the series both influence
the positioning criteria (Friedman’s test, 5% critical level).
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Table IV. Descriptive statistics of the positioning criteria obtained in the series with three shifts, with different prior probabilities
of no change (p), different prior parameters of the interval of detection (a,b) and with a minimum segment length (segmin)a.

p a,b Segmin

0 5 10 10

Mean Median SD Mean Median SD Mean Median SD Mean Median SD

0.01 7041.7 7539.2 1390.1 7395.6 7351.5 165.6 4973.4 4902.0 482.6 2012.2 2450.5 1766.6
0.05 6719.5 7151.7 1639.3 6893.5 7351.1 1308.1 4632.8 4901.2 1254.9 2002.7 2450.5 1799.8
0.10 5720.1 6128.8 1949.9 5655.4 6125.9 1794.4 3469.1 3922.0 1931.2 1888.9 2450.3 1885.1
0.25 3459.0 3379.3 2135.5 3603.4 3920.4 1946.8 2233.0 2450.8 1944.1 1894.4 2450.3 2056.6
0.50 2510.6 2466.5 2142.6 2576.3 2457.5 2031.4 1989.3 2450.3 2138.8 2103.8 2451.3 2221.6
0.75 2458.4 2470.6 2359.4 2374.8 2452.3 2335.0 2147.4 2450.3 2409.8 2365.1 3267.0 2342.3
0.90 2694.1 3267.0 2581.9 2610.2 3267.0 2587.2 2473.5 3267.0 2615.5 2652.5 3267.0 2425.3
0.95 2894.2 3267.0 2698.7 2818.7 3267.0 2703.4 2719.0 3267.0 2714.8 2839.7 3267.0 2464.1
0.99 3328.8 3267.0 2842.9 3269.8 3267.0 2849.3 3206.5 3267.0 2863.8 3213.3 3267.0 2490.0

a The prior probability of no change and the choice of parameters to handle the detections at the beginning or end of the series both influence
the positioning criteria (Friedman’s test, 5% critical level).
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Figure 4. Mean positioning criteria obtained in the series with (a) two shifts (b) three shifts.

Table V. Number of detected shifts in the series with two shifts,
with different prior probabilities of no change (p), different
prior parameters of the interval of detection (a,b) and with a

minimum segment length (segmin).

p a,b Segmin

0 5 10 10

Mean SD Mean SD Mean SD Mean SD

0.01 11.7 4.9 12.3 0.8 6.1 0.6 2.7 1.1
0.05 10.2 5.1 10.5 3.3 5.5 1.5 2.6 1.0
0.10 6.8 4.0 6.8 3.3 4.0 1.8 2.3 0.9
0.25 3.3 1.9 3.4 1.8 2.6 1.2 2.0 0.7
0.50 2.2 1.0 2.3 1.0 2.1 0.8 1.8 0.6
0.75 1.9 0.8 1.9 0.7 1.8 0.6 1.7 0.5
0.90 1.7 0.7 1.7 0.6 1.7 0.6 1.7 0.5
0.95 1.6 0.6 1.6 0.6 1.6 0.6 1.6 0.5
0.99 1.5 0.6 1.5 0.6 1.5 0.6 1.6 0.5

Table VI. Number of detected shifts in the series with three
shifts, with different prior probabilities of no change (p),
different prior parameters of the interval of detection (a,b) and

with a minimum segment length (segmin).

p a,b Segmin

0 5 10 10

Mean SD Mean SD Mean SD Mean SD

0.01 12.6 4.6 12.3 0.8 6.1 0.6 3.3 1.0
0.05 11.6 4.8 11.2 2.7 5.8 1.2 3.2 1.0
0.10 8.6 4.1 8.2 3.2 4.8 1.6 3.0 1.0
0.25 4.6 2.2 4.7 2.0 3.4 1.2 2.6 0.8
0.50 3.1 1.4 3.3 1.4 2.8 1.0 2.5 0.8
0.75 2.6 1.1 2.6 1.0 2.5 0.9 2.4 0.8
0.90 2.4 1.0 2.3 0.9 2.3 0.9 2.3 0.8
0.95 2.2 0.9 2.2 0.9 2.2 0.9 2.2 0.8
0.99 2.0 0.9 2.0 0.9 2.0 0.9 2.0 0.8
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5. Case study

An application of the BNHT to a real case study is
presented in this section. The homogeneity of the total
annual precipitation records of Quebec City (station
7016294) is tested. The observations and the metadata
were provided by Environment Canada.

The Quebec City station was chosen because it has
no missing values and a long series of observations and
also because neighbour series and metadata are available
for this station. The same case was studied previously
in Beaulieu et al. (2009) with other techniques. The base
station is located at latitude 46.8, longitude −71.38 and
at an altitude of 70 m. Two neighbour stations, Shawini-
gan Falls (7018000) and La Pocatiere (7054095), were
identified in the set of 35 stations by considering the dis-
tance from the base station, the elevation difference, the
observation period, the correlations and the correlations
computed from the first difference series. The analysis
was performed for the common period of observations:
1944–1982. For this period, the correlations between
Quebec-Shawinigan Falls and Quebec-La Pocatiere are,
respectively, 0.72 and 0.53. However, the correlations
computed from the first difference series are higher, 0.89
and 0.88 for Quebec-Shawinigan Falls and Quebec-La
Pocatiere, respectively. This indicates that there may be
a shift in the base series which affects the correlation
(Vincent, 1998). Figure 5 presents the data series of the
base and the two neighbour stations. For the Quebec
station, there are many documented relocations; two of
which represent changes in elevation (1958 and 1977).

For precipitation series, a small change in the instru-
ment height can induce a very important shift in a series
(Heino, 1997). Hence, these two relocations could have
introduced artificial shifts in the Quebec precipitation
series.

The BNHT was applied to the series of ratios between
the base series and the mean of the two neighbour
series. As two relocations could have introduced a shift
in the series, the probability that there is a change in
this series is high and hence, p should be set low.
However, different values of p were used to verify the
sensitivity of the technique to the choice of the prior
parameters. A uniform prior distribution was used for
the position (Equation (4)). The interval of detection was
set to the entire series, because the second potential
shift is located at the end of the series. The triangular
prior distribution is not a good choice in this case
because there are two potential positions of change (1958
and 1977) and no indications about which one is the
most probable. Figure 6 presents the obtained posterior
probability distributions. A change is detected in 1958 in
all cases. The 95% Bayesian credibility interval is given
by the years (1958,1959,1960,1961,1962). This indicates
that there is a probability of 0.95 that a change occurred
during 1958 and 1962, with 1958 being the most probable
year of change. The equality of all posterior densities
indicates that the detection of this shift is robust to the
choice of prior. Even with a very high-prior probability
of no change (0.99), the shift is detected. The shift has
a large magnitude (>1 SD) and then, the detection is
less influenced by the choice of the prior. This effect
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Figure 5. Total annual precipitation (Ptot) of the base station and the two neighbour stations: (a) Quebec City (base), (b) Shawinigan Falls
(neighbour), (c) La Pocatiere (neighbour).
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Figure 6. Posterior probability distributions for the position of the shift in the series of ratios of the base station (Quebec City) and the two
neighbour stations (Shawinigan Falls and La Pocatiere).

was observed in the simulation study on the series with
a single shift in Section 4.2: a shift having a small
magnitude is more easily detected using an informative
prior, but a shift having a large magnitude is detected
most of the time and less influenced by the choice of the
prior. In Beaulieu et al. (2009), different homogenisation
techniques were applied to the same case study and a
single significant shift was found in 1958.

The Shapiro–Wilk and Wald–Wolfowitz tests were
applied to the series of ratios to verify their normality and
independence, as the technique relies on these hypothe-
ses. Both tests are rejected at the 5% critical level. The
normality test is probably rejected due to the presence of
a shift in the mean of the series, which affects the symme-
try of the distribution (Figure 7). The Wald–Wolfowitz
statistic checks the randomness hypothesis for a two-
valued data sequence. In the presence of an important
shift, the sequence is not random, as the smallest values
are concentrated in one segment and the highest values
are concentrated in the other segment. The usual statisti-
cal tests can only be performed as an indicator on both
sides of the detected changepoint, after the changepoint
test is applied (Perreault et al., 1999). These two tests
were reapplied to the two segments of the series of ratios,
separated after 1958, and the normality and independence
hypotheses are respected (5% critical level). Furthermore,
the equality of the variances before and after the shift was
tested. The two variances do not seem different (Fisher
test, 5% critical level).
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Figure 7. Histogram of the ratios of the base (Quebec City) and the
mean of the two neighbour series (Shawinigan Falls and La Pocatiere).

The other documented change in 1977 could also have
affected the homogeneity of the series. Furthermore, an
undocumented change could have introduced an artificial
shift in the series. Hence, the technique was reapplied
to the two segments of the series. In the first segment,
there is no indication about a potential change in the
metadata. Then, a uniform prior distribution for the
position was used and the prior probability of no change
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was set high. In a first attempt, a shift was detected at
position 2, which seemed to be a false detection at the
beginning of the series. Then, the interval of detection
was restrained to years 1947–1956. The analysis was
performed with p taking the values 0.5, 0.75 and 0.99 in
order to study the sensitivity. Figure 8 presents the prior
and posterior distributions for the analysis performed
on the period 1944–1958. With p = 0.5, a change is
detected in 1947. With p = 0.75 or p = 0.99, no change
is detected. As the metadata does not indicate any
change, p = 0.75 seems to be a more reasonable choice.
Therefore, the series seems homogeneous for the period
1944–1958.

In the second segment, the metadata indicates that an
inhomogeneity could have occurred in 1977. The trian-
gular prior distribution was used by setting the interval
of detection between 1972 and 1981, the mode at 1977
and a low prior probability of no change. Once again,
p = 0.5 was used to study the sensitivity of the tech-
nique. Figure 9 presents the posterior probabilities for
the position of the change. With p taking the values 0.01
or 0.25, the most probable year of change is 1980. The
95% credibility interval for the year of change is given by
(1974,1975,1976,1977,1978,1979,1980) (computed with
p = 0.01). The shift detected could be due to the reloca-
tion in 1977, since this year is in the credibility interval.
It could also be a false detection occurring at the end of
the series. With p = 0.5, no shift is detected. This could
be because either the segment is not long enough or that

the magnitude of the change is too small and is only
detectable with a small p.

6. Discussion

6.1. Use of metadata and neighbour series

Homogenisation techniques presented in the literature
rely on either the metadata or/and on a comparison with
neighbour series to perform the analysis. When using
relative homogenisation techniques (based on neighbour
series), the metadata is often consulted after a change
is detected to determine its cause. Some techniques use
metadata to identify which segment of the series will
be tested (Peterson et al., 1998). The BNHT allows a
straightforward use of the metadata by incorporating
it into the prior distribution. This is an advantage of
the BNHT over the other homogenisation techniques
which may not allow easy integration of non-uniform
prior distribution. Furthermore, the BNHT will help to
detect changes having a small magnitude which would
not be detected with other techniques or with a non-
informative prior distribution. This feature is especially
important for precipitation series, because they exhibit
a high variability which reduces the power of detection
of changepoint techniques. Furthermore, the power of
detection of changepoint techniques generally increases
with the length of the series. Once again, the use of
informative priors can help to increase the power of
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Figure 8. Posterior probability distributions for the position of the shift (1944–1958) in the ratios of the base (Quebec City) and the mean of
the two neighbour series (Shawinigan Falls and La Pocatiere).
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Figure 9. Posterior probability distributions for the position of the shift (1959–1982) in the ratios of the base (Quebec City) and the mean of
the two neighbour series (Shawinigan Falls and La Pocatiere).

detection in short series. It is also possible to apply the
BNHT without neighbour stations. However, it should be
acknowledged that the use of a neighbour series that is
inhomogeneous could alter the detection and correction of
a shift (Menne and Williams, 2005; Reeves et al., 2007).

6.2. Priors and subjectivity

The prior distribution for the position of the shift used in
the simulation study was uniform. The advantage is that
it can accommodate both the case for which the position
of the potential shift is known and the case for which it is
not. However, it was shown in the case study that other
prior distributions could be relevant. For example, a trian-
gular distribution could be used to give the highest prior
probability to the position for which a change is recorded
in the metadata. Furthermore, the distributions for the
means are conjugate. The hyperparameters are chosen
according to the maximum likelihood type-II approach
for prior selection. Once again, other approaches for prior
selection could be used and could lead to different results.
This is a common criticism of the Bayesian approach:
it contains a certain amount of subjectivity. Hence, the
specification of the prior distribution and of the likelihood
function entails a succession of subjective judgements
(Goldstein, 2006). However, even a classical use of statis-
tics can also end up being subjective as the choice of the
technique to use for a given problem, as well as the choice
of the neighbour series, heavily depends on the analyst
and can lead to different results.

6.3. Multiple shifts

The BNHT was developed for at most one changepoint,
as it is the case for most homogenisation techniques. Nev-
ertheless, it was applied to multiple shifts using a segmen-
tation procedure, as it is often done in practice. The test
could be extended to detect multiple shifts in a more fash-
ionable way. For example, a hierarchy of sub-hypotheses
as presented in Chen and Gupta (2001) could be con-
structed. The form of the posterior distribution (unimodal
vs multimodal) can also provide a good hint about the
number of shifts. For example, if the posterior probability
distribution of the position of the change has two main
peaks and that the credibility interval is discontinuous,
there are probably more than one shift in the series.

However, the detection of multiple inhomogeneities in
precipitation series is usually more difficult than in tem-
perature series, because of their larger spatial and tem-
poral variability. For example, Müller-Westermeier et al.
(2004) performed a homogeneity analysis of temperature
and precipitation series in Germany for each month of the
year. They rarely detected more than one inhomogeneity
in precipitation series.

6.4. U-shape

In Wang et al. (2007), it was shown that the false detec-
tion rates and the probabilities of detection according to
the shift positions generally have a U-shape. It was shown
in Figure 2 that BNHT tends to detect more shifts at the
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beginning or end of the series. The parameters of the
interval of detection help to reduce this effect, but do not
eliminate it entirely. This has to be taken into consider-
ation when applying this technique. It was also shown
that false detections are reduced when the shifts detected
at the beginning or end of the series are ignored. Never-
theless, other forms of prior distributions which give less
weight to the positions at the end of the series could be
used to correct the U-shape effect.

6.5. Normality and independence hypotheses

The BNHT was developed for normal and independent
series. The normal distribution was used as it is reason-
able to represent total annual precipitation and also com-
monly used to represent temperature series. The effects of
departure from normality were not studied in this work. It
is also realistic to assume that annual precipitation series
will be independent. Therefore, it was not judged neces-
sary to study the effect of the presence of autocorrelation
in this work. However, it is known that homogenisation
techniques developed for independent error series tend to
detect more false shifts in the presence of positive auto-
correlation (Lund et al., 2007; Wang, 2008). Tang and
MacNeill (1993) proposed a straightforward technique to
adjust for the presence of autocorrelation with different
changepoint techniques. In presence of first-order auto-
correlation (ϕ1), the posterior probability distribution for
the case of no change, π(k = n|x), can be multiplied by
the factor

√
1 + ϕ1/1 − ϕ1. For a positive autocorrela-

tion, this correction will increase the posterior probability
of no change (k = n), and hence, the number of false
detections will be reduced.

7. Conclusions

7.1. Summary of results

The BNHT allows for the detection of a change in
the mean of a normal series. The advantages of the
proposed approach are its ease of use, the straightforward
inclusion of metadata and the analytical form of the
posterior distributions. The performance of this test and
its sensitivity to the choice of the prior parameters were
assessed in a simulation study. For the homogeneous
series, the test was very sensitive to the choice of the
prior probability of no change. The percentages of false
detections were small (<5%) when the prior probability
of no change was set to at least 0.75 or to at least 0.5
when the shifts detected at the extremities of the series
are ignored. For series with a single shift, the technique
was less sensitive to the choice of the prior parameters
and had a high power of detection in all cases. It gave
better results than those obtained in Beaulieu et al. (2008,
2009). Furthermore, this technique is able to detect a
shift with a small magnitude, especially when the prior
probability of no change is small. For the series with
multiple shifts, the technique gave positioning criteria
equivalent to the best techniques previously compared. A
case study was also presented to illustrate the application

of the BNHT to a real data series. Different priors were
used to verify their effect on the posterior density of the
shift’s position. A change documented in the metadata in
1958 was detected with all different priors. The same shift
was also detected by other homogenisation techniques
applied to the same case study in Beaulieu et al. (2009).

7.2. Recommendations

According to the results of the simulation study and
the case study, some recommendations can be made
for further use of the BNHT. If the metadata seems
incomplete, the BNHT should be applied with a prior
probability of no change of 0.5 and a uniform prior
distribution. If there is nothing documented that could
have affected the homogeneity at this station, then the
BNHT should be applied with a high-prior probability of
no change (≥0.75) to minimise the risk of false detection.
The parameters of the interval of detection should then
be set to avoid false detection at the beginning or end of
the series. Hence, even with a high-prior probability of no
change, this technique still has a high power of detection.
If there is a documented change in the metadata that could
have affected the homogeneity of the series, the prior
probability of no change could be set low (≤0.25) and the
parameters of the interval of detection could concentrate
the probabilities around the date of the potential shift
or the triangular distribution could be used. This would
allow the detection of shifts having a small magnitude
that would not be detected with a high-prior probability
of no change. In the case study, it was shown that a
changepoint can affect the results of the normality and
independence tests. Then, these hypotheses should be
verified in each segment after the detection of a shift.

7.3. Future work

The BNHT was applied in this paper to synthetic
series of precipitation, but it could be used to detect
inhomogeneities or a change in the mean in other climatic
series that are normally distributed (e.g. temperature).

The general formulation of the technique as presented
in Lee (1998) allows the detection of a change in the
parameters of a distribution belonging to the exponential
family. The Gamma distribution also belongs to the
exponential family and is a more natural choice to
represent variables with asymmetric distributions such as
monthly or seasonal precipitation. Future work should
focus on the application of the technique to detect
inhomogeneities in precipitation series based on the
Gamma distribution.

Such test would be useful to detect real or artificial (due
to modifications in the observation procedures) changes
in the parameter of the distribution (belonging to the
exponential family) of a larger range of climatic series.
For example, it could be used to detect changes in
the intensity of tornado counts (Poisson distributed), in
wind speed (Gamma), in cloudiness (Beta) or in climatic
extremes (Weibull). The posterior densities for other
distributions should constitute the subject of future work.
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Appendix

Bayesian changepoint detection in the natural
exponential family

A probability distribution is said to belong to the natural
exponential family if its probability density function can
be written as:

f (x|θ) = exp{θx + ϕ(θ) + S(x)} (A1)

where ϕ(θ) and S(x) are the two functions which depend
on the form of the distribution. Consider the following
changepoint model:

xi ∼
{

Fθ1 i = 1, . . . , k

Fθ2 i = k + 1, . . . , n

(A2)

where the xi s are independent variables, Fθ1 and Fθ2

represent the distributions before and after the shift with
parameters θ1 and θ2, respectively, k is the unknown posi-
tion of the changepoint and n is the length of the series.
The joint distribution of x = (x1, . . . , xk, xk+1, . . . , xn) is
then:

f (x|θ) = exp

{
θ1

k∑
i=1

xi + θ2

n∑
i=k+1

xi + kϕ(θ1)

+(n − k)ϕ(θ2) +
n∑

i=1

S(xi)

}
(A3)

The hypothesis that there is no change in the parameter of
the distribution (θ1 = θ2) is tested against the hypothesis
that there is a change in the parameter of the distribution
at time k:

H0 : k = n

H1 : 1 ≤ k ≤ n − 1 (A4)

In Lee (1998), the prior probability distribution for k is
given by:

g0(k) =
{

p k = n
1 − p
n − 1 k �= n

(A5)

where p represents the prior probability of no change
(0 ≤ p ≤ 1). A conjugate prior is used for the parameters
θ1 and θ2. For the exponential family, the conjugate prior
has the form:

π(θ |m, c) ∝ exp{mcθ + mϕ(θ)} (A6)

where m and c are hyperparameters such that m ≥ 0 and
c ∈ X. X represents the sample space of the xi s. Lee
(1998) set the prior information about θ1 and θ2 to take
into account the position of the changepoint:

π(θ1|k) = π(θ1|m1k, c1k) k = n

π(θ1, θ2|k) =
2∏

i=1

π(θi |mik, cik) k �= n (A7)

where π(θi |mik, cik) ∝ exp{mikcikθi + mikϕ(θi)}, i =
1, 2,mik ≥ 0, cik ∈ X. The joint prior distribution of
(k, θ1, θ2) is given by:

π(k, θ1) = p · exp{m1kc1kθ1 + m1kϕ(θ1)}
π̃(�|m1k, c1k)

k = n

π(k, θ1, θ2) = 1 − p
n − 1

·
exp

{
2∑

i=1

[mikcikθi + mikϕ(θi)]

}

2∏
i=1

π̃(�|mik, cik)

k �= n

(A8)

where

π̃(�|mik, cik) =
∫

�

exp{mikcikθi + mikϕ(θi)}dθi

i = 1, 2 (A9)

and � represents the parameter space of θ1 and θ2.
According to the Bayes theorem and from the joint
distribution of x (Equation (A3)) and the joint prior
distribution (Equation (A8)), the posterior distribution of
the position of the changepoint k is:

π(k|x) ∝


p ·

π̃


�|m1k + n,

m1kc1k +
n∑

i=1

xi

m1k + n




π̃(�|m1k, c1k)
, k = n

1 − p
n − 1 ·

π̃


�|m1k + k,

m1kc1k +
k∑

i=1

xi

m1k + k




π̃(�|m1k, c1k)

·

π̃


�|m2k + (n − k),

m2kc2k +
n∑

i=k+1

xi

m2k + (n − k)




π̃(�|m2k, c2k)
, k �= n

(A10)
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The values of the hyperparameters mik can be thought
of as the sample size of priors. Then they can be set such
that m1k = k and m2k = n − k, which corresponds to the
size of the two samples (x1, . . . , xk) and (xk+1, . . . , xn)
(Lee, 1998). To estimate the hyperparameters cik , Lee
(1998) proposed to use the maximum likelihood type-II
(ML-II) approach for prior selection, such as presented in
Berger (1985). It consists in performing a maximisation
of the marginal distribution of x, m(x|π), over the
hyperparameters cik, i = 1, 2, k = 1, . . . , n. When m1k =
k and m2k = n − k, to maximise m(x|π) over π is
equivalent to maximising the two following functions on
c1k and c2k (Lee, 1998):

π̃(�|2k, (c1k + xk)/2)

π̃(�|k, c1k)
or

π̃(�|2(n − k), (c2k + x∗
k)/2

π̃(�|n − k, c2k)
(A11)

where xk = ∑k
i=1 xi/k and x∗

k = ∑n
i=k+1 xi/(n − k). The

logarithm of these functions gives an expression which
is similar to the function:

h(s) = log(π̃(�|2k, (c + s)/2)) − log(π̃(�|k, s))

(A12)

c is xk or x∗
k and s represents the hyperparameters to

maximise. By taking the derivative function, the maxi-
mum values can be obtained. For the normal case, h(s)

is concave downward and the ML-II hyperparameters are
easily obtained.

Notations

� parameter space for θ1 and θ2

θ parameter of a distribution
θ1 parameter of a distribution before the shift
θ2 parameter of a distribution after the shift
µ1 mean of the series before the shift
µ2 mean of the series after the shift
π(θ) prior distribution of the parameter θ

π(θ1|k) prior distribution of the parameter θ1 given
the position of the shift (under the no-
change hypothesis)

π(θ1, θ2|k) prior distribution of the parameters θ1 and
θ2 given the position of the shift (under the
change hypothesis)

π(θ |m, c) prior distribution of the parameter θ with
the hyperparameters m and c

π(k|x) posterior distribution of k given the obser-
vations x

σ 2 variance
σ̂ 2 sample variance
σ̂ 2

p pooled sample variance
ϕ1 first-order autocorrelation
ϕ(θ) function of θ in the exponential fam-

ily form
a prior parameter indicating the position of

the beginning of the interval of detection
b prior parameter indicating the position of

the end of the interval of detection

C positioning criterion
c hyperparameter for the prior distribution of

the mean
ĉ1k ML-II hyperparameter for the prior distri-

bution of the mean µ1

ĉ2k ML-II hyperparameter for the prior distri-
bution of the mean µ2

d prior parameter indicating the mode of the
prior triangular distribution

e prior parameter indicating the end of the
interval of detection (triangular distribu-
tion).

Fθ1 distribution before the shift
Fθ2 distribution after the shift
f (x|θ) probability density of x given the parame-

ter θ

g0(k) prior probability distribution of the position
of the shift in Lee (1998)

g1(k) prior probability distribution of the position
of the shift uniform over [a, n − b]

g2(k) prior probability distribution of the position
of the shift triangular with a mode of d and
over the support [a, n − b]

k position of the shift
m hyperparameter for the prior distribution of

the mean
m̂1k ML-II hyperparameter for the prior distri-

bution of the mean µ1

m̂2j ML-II hyperparameter for the prior distri-
bution of the mean µ2

N normal distribution
n number of observations
nd number of shifts detected in the series
nr number of true shifts in the series
p prior probability of no change
pi positions of the true shifts (i = 1, . . . , nr)
pd

i positions of the detected shifts (i = 1, . . . ,

nd)
S(x) function of x in the exponential fam-

ily form
X sample space for x
x vector of observations
xi ith observation in the series of ratios/

differences
xk mean of the first k observations in the

series of ratios/differences
x∗

k mean of the last n − k observations in the
series of ratios/differences

xn overall mean of the series of ratios/
differences
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Ducré-Robitaille JF, Boulet G, Vincent LA. 2003. Comparison of
techniques for detection of discontinuities in temperature series.
International Journal of Climatology 23: 1087–2003.

Easterling DR, Peterson TC. 1995. A new method for detecting
undocumented discontinuities in climatological time series.
International Journal of Climatology 15: 369–377.

Ghorbanzadeh G, Lounes R. 2001. Bayesian analysis for detecting a
change in exponential family. Applied Mathematics and Computation
124: 1–15.

Goldstein JO. 2006. Subjective Bayesian analysis: principles and
practice. Bayesian Analysis 1: 403–420.

Heino R. 1997. Metadata and their role in homogenization. Proceedings
of the First Seminar for Homogenization of Surface Climate Data ,
Hungarian Meteorological Service, Budapest, Hungary.

Holbert D. 1982. A Bayesian analysis of a switching linear model.
Journal of Econometrics 19: 77–87.

Kander Z, Zacks S. 1966. Tests procedures for possible changes in
parameters of statistical distributions occurring at unknown time
points. The Annals of Mathematical Statistics 37: 1196–1210.

Lee CB. 1998. Bayesian analysis of a change-point in exponential
families with applications. Computational Statistics and Data
Analysis 27: 195–208.

Lee ASF, Heghinian SM. 1977. A shift of the mean level in a
sequence of independent normal random variables. Technometrics
19: 503–506.

Lund R, Wang XL, Lu Q, Reeves J, Gallagher C, Feng Y. 2007.
Changepoint detection in periodic and autocorrelated time series.
Journal of Climate 20: 5178–5190.

Menne MJ, Williams CNJ. 2005. Detection of undocumented
changepoints using multiple test statistics and composite reference
series. Journal of Climate 18: 4271–4286.

Müller-Westermeier G 2004. Statistical analysis of results of
homogeneity testing and homogenization of long climatological
time series in Germany. Proceedings of the Fourth Seminar for
Homogenization and Quality Control in Climatological Databases,
Budapest, Hungary, Report WCDMP 56, WMO-TD 1236, World
Climata Data and Monitoring Programme. World Meteorological
Organization: Geneva, Switzerland.
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