
doi: 10.1098/rsta.2011.0383
, 1228-1249370 2012 Phil. Trans. R. Soc. A

 
Claudie Beaulieu, Jie Chen and Jorge L. Sarmiento
 
climate variations
Change-point analysis as a tool to detect abrupt
 
 

References

related-urls
http://rsta.royalsocietypublishing.org/content/370/1962/1228.full.html#

 Article cited in:
 
l.html#ref-list-1
http://rsta.royalsocietypublishing.org/content/370/1962/1228.ful

 This article cites 90 articles, 11 of which can be accessed free

Subject collections

 (29 articles)statistics   �
 (99 articles)climatology   �

 
collections
Articles on similar topics can be found in the following

Email alerting service  herein the box at the top right-hand corner of the article or click 
Receive free email alerts when new articles cite this article - sign up

 http://rsta.royalsocietypublishing.org/subscriptions
 go to: Phil. Trans. R. Soc. ATo subscribe to 

 on January 30, 2012rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/content/370/1962/1228.full.html#ref-list-1
http://rsta.royalsocietypublishing.org/content/370/1962/1228.full.html#related-urls
http://rsta.royalsocietypublishing.org/cgi/collection/climatology
http://rsta.royalsocietypublishing.org/cgi/collection/statistics
http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;370/1962/1228&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/370/1962/1228.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/


Phil. Trans. R. Soc. A (2012) 370, 1228–1249
doi:10.1098/rsta.2011.0383

Change-point analysis as a tool to detect abrupt
climate variations

BY CLAUDIE BEAULIEU1,*, JIE CHEN2 AND JORGE L. SARMIENTO1

1Program in Atmospheric and Oceanic Sciences, Princeton University,
Princeton, NJ 08540, USA

2Department of Mathematics and Statistics, University of Missouri–Kansas
City, Kansas City, MO 64110, USA

Recently, there have been an increasing number of studies using change-point methods
to detect artificial or natural discontinuities and regime shifts in climate. However, a
major drawback with most of the currently used change-point methods is the lack of
flexibility (able to detect one specific type of shift under the assumption that the residuals
are independent). As temporal variations in climate are complex, it may be difficult to
identify change points with very simple models. Moreover, climate time series are known
to exhibit autocorrelation, which corresponds to a model misspecification if not taken
into account and can lead to the detection of non-existent shifts. In this study, we extend
a method known as the informational approach for change-point detection to take into
account the presence of autocorrelation in the model. The usefulness and flexibility of
this approach are demonstrated through applications. Furthermore, it is highly desirable
to develop techniques that can detect shifts soon after they occur for climate monitoring.
To address this, we also carried out a simulation study in order to investigate the number
of years after which an abrupt shift is detectable. We use two decision rules in order to
decide whether a shift is detected or not, which represents a trade-off between increasing
our chances of detecting a shift and reducing the risk of detecting a shift while in reality
there is none. We show that, as of now, we have good chances to detect an abrupt
shift with a magnitude that is larger than that of the standard deviation in the series of
observations. For shifts with a very large magnitude (three times the standard deviation),
our simulation study shows that after only 4 years the probabilities of shift detection reach
nearly 100 per cent. This reveals that the approach has potential for climate monitoring.

Keywords: change-point detection; autocorrelation; regime shift; abrupt climate change

1. Introduction

It is widely recognized that long-term changes in global temperature or other
climatic variables exhibit abrupt shifts and nonlinearities in their behaviour.
Several types of abrupt shifts can be encountered. Regime shifts, such as that
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Change-point detection in climate 1229

observed in the Pacific Decadal Oscillation (PDO), are rapid reorganizations
from one relatively stable state to another [1]. The regimes themselves can
last for several decades and abruptly change to another regime. This can have
serious implications for ocean ecosystems, such as the changes associated with
past regime shifts in 1977 and 1989 in the North Pacific climate [2–7]. Climate
tipping points are also sudden changes, often irreversible, and can have dramatic
consequences for the Earth system [8,9].

Recently, the use of change-point methods to detect past abrupt shifts in
climate time series has become widespread. A change point is a point in time
at which the parameters of the underlying distribution or the parameters of the
model used to describe the time series abruptly change (e.g. mean, variance,
trend). In the context of the Earth sciences, change-point detection techniques
have been used to detect changes in temperature and in precipitation [10], to
detect regime shifts [1], to detect shifts in aerosol and cloud data [11] and to
study past changes in the land uptake of carbon [12]. Change-point detection has
also been widely used for the detection of artificial shifts [13].

In this paper, we briefly review change-point detection approaches used for
climate research and present in more detail the informational approach (an
approach based on the use of an information criterion), which is general and
flexible. More specifically, we use the Schwarz information criterion (SIC).
Change-point detection techniques based on the SIC were originally developed
for independent time series [14–16]. Here, we extend the informational approach
to take into account autocorrelation in change-point detection, as autocorrelation
is often present in climate time series and can complicate the detection of change
points [17–19]. We illustrate the usefulness of the proposed methodology by
applying it to study abrupt shifts in carbon dioxide (CO2) concentrations at
Mauna Loa, Hawaii, and in the interhemispheric gradient of D14C. These examples
demonstrate how the informational approach can be applied to detect a shift in
the coefficients of a multiple linear regression model with or without the presence
of autocorrelation in the errors of the model. Furthermore, the ability to detect
an abrupt shift as early as possible after it occurs would be greatly beneficial
for climate monitoring. For this reason, we also perform a second simulation
study to determine the number of years of observations required to detect an
abrupt shift.

2. Literature review of change-point analysis

Change-point techniques have been developed to detect abrupt shifts in the
parameters of a distribution or in the coefficients of a regression model. These
techniques make it possible to detect the timing of the shift under the model
containing a shift and to determine whether there is a change or not using a
decision rule. The usual problem is that it is difficult to obtain the distribution of
the statistic under the null hypothesis of no change. Different approaches can be
applied to approximate this distribution, such as the Bonferroni inequality [20],
the asymptotic theory [21] and Monte Carlo methods [22]. These approaches
are not presented in detail here, as this is outside the scope of this paper. For
details about the development of change-point techniques, the reader can refer to
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Table 1. List of notation.

b trend of the linear regression model
b̂ estimate of the trend of the linear regression model
b1 trend before the shift
b̂1 estimate of the trend before the shift
b2 trend after the shift
b̂2 estimate of the trend after the shift
D magnitude of the shift
3t random errors of the model at time t
h quadratic trend of the regression model
h1 quadratic trend of the regression model before the shift
h2 quadratic trend of the regression model after the shift
l intercept of the linear regression model
l̂ estimate of the intercept
l1 intercept before the shift
l̂1 estimate of the intercept before the shift
l2 intercept after the shift
l̂2 estimate of the intercept after the shift
m overall mean
m̂ estimate of the mean
m1 mean before the shift
m̂1 estimate of the mean before the shift
m2 mean after the shift
m̂2 estimate of the mean after the shift
ri lag-i autocorrelation coefficient
r̂i estimate of the lag-i autocorrelation coefficient
s2 overall variance
s2

1 variance before the shift
s2

2 variance after the shift
kj number of parameters to estimate in model j
L(Q̂j ) maximum likelihood of model j
m autocorrelation order
N normal distribution
n number of observations
p time of the shift
RSS residual sum of squares
SICj Schwarz information criterion for model j
t time (years)
yt response variable at time t
ȳ sample mean of the response variable
ȳ1 sample mean of the response variable before the shift
ȳ2 sample mean of the response variable after the shift

general literature reviews of change-point detection techniques presented by Bai &
Perron [23] and Chen & Gupta [24]. In this section, we present the different models
that have been used for climate-related applications of change-point detection. We
refer to a few studies that have looked at climate variations using these models,
but we do not intend to provide an exhaustive list owing to the scope of this
study. The list of notation used in this paper is presented in table 1.
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Figure 1. Examples of time series with a change point in (a) the mean, (b) the variance, (c)
both the mean and the variance, (d) the intercept of a linear regression model and (e) both the
intercept and the trend of a linear regression model, and (f ) no change point, but a strong positive
autocorrelation.

(a) Mean and/or variance

Techniques for the detection of shifts in the mean and variance have received
significant attention in the statistical literature [20,25–31]. Examples of synthetic
series with a shift in the mean, in the variance and in both the mean and the
variance are presented in figure 1a–c. Typically, the most likely time for a shift
is identified, and then the model with this shift is compared to a model without
any shift. To test for a shift in the mean only, a model with a constant mean and
variance, and a model with a shift in the mean only are fitted. These models can
be expressed, respectively, as

yt = m + 3t , 3t ∼ N (0, s2) (t = 1, . . . , n), (2.1)

yt =
{

m1 + 3t , 3t ∼ N (0, s2) (t = 1, . . . , p),
m2 + 3t , 3t ∼ N (0, s2) (t = p + 1, . . . , n),

(2.2)

where yt is the response variable, m represents the overall mean, 3t are the
normally distributed (N ) random errors with mean 0 and overall variance s2,
t represents the time, n is the number of observations, and m1 and m2 are the means
before and after the unknown change point at time p. These models have been
used widely to detect artificial shifts in temperature, pressure or precipitation
series [13,32–36]. Undocumented changes in the measurement procedures can be
detected by applying change-point techniques to series of ratios or differences
between the observations at several neighbouring sites. The detection and
correction of these artificial shifts are very important in producing reliable time
series suitable for the analysis of climate trends and climate variability and for
the detection of anthropogenic climate change [37].
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Models representing a shift in the variance, and in both the mean and the
variance, respectively, can be expressed as

yt =
{

m + 3t , 3t ∼ N (0, s2
1) (t = 1, . . . , p),

m + 3t , 3t ∼ N (0, s2
2) (t = p + 1, . . . , n),

(2.3)

yt =
{

m1 + 3t , 3t ∼ N (0, s2
1) (t = 1, . . . , p),

m2 + 3t , 3t ∼ N (0, s2
2) (t = p + 1, . . . , n),

(2.4)

where s2
1 and s2

2 are the variances before and after the unknown change point at
time p. These models can also be compared with the model with a constant mean
and variance (equation (2.1)). Change-point detection in the variance has been
applied mostly in finance to study volatility in stock market prices [14,27,29].
Recently, Killick et al. [38] used change-point detection to study changes in the
variance of hindcast time series of significant wave height during 1900–2005 in
the Gulf of Mexico. This analysis revealed abrupt changes in the variance of
significant wave height during the period 1900–1933, which are thought to be
due to the underestimation of some storms in the early twentieth century in
hindcast time series.

(b) Linear regression

A linear regression model with a shift in the intercept and/or trend is another
case that has been extensively studied in the statistical literature [39–44]. We
represent a simple linear regression model by

yt = l + bt + 3t , 3t ∼ N (0, s2) (t = 1, . . . , n), (2.5)

where l represents the intercept, b represents the trend and 3t are the random
errors. A model with a shift in the intercept at the unknown time p is
expressed by

yt =
{

l1 + bt + 3t , 3t ∼ N (0, s2) (t = 1, . . . , p),
l2 + bt + 3t , 3t ∼ N (0, s2) (t = p + 1, . . . , n),

(2.6)

where l1 and l2 are the intercept before and after the shift at time p. Finally, a
model with a shift in both the intercept and trend at time p can be fitted:

yt =
{

l1 + b1t + 3t , 3t ∼ N (0, s2) (t = 1, . . . , p),
l2 + b2t + 3t , 3t ∼ N (0, s2) (t = p + 1, . . . , n),

(2.7)

where b1 and b2 represent the trend before and after the shift at time p. Examples
of synthetic series with a shift in the intercept only and a shift in the intercept and
trend are presented in figure 1d,e. Solow [45] used these models to search for shifts
in trends of temperature time series. In hydrology, techniques allowing a choice
between these models, as well as models with a shift in the mean only, have been
developed to study shifts in river streamflows [46,47]. Streamflows are likely to
exhibit these types of changes if there are changes in the precipitation, changes
in deforestation or the construction of hydraulic structures in the surrounding
environment [47]. Cermak et al. [11] used these models to detect change points
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in aerosol optical depth and cloud datasets and to investigate whether these
changes are consistent with ‘global brightening’. These models have also been
used to detect artificial shifts in climate time series [48–50].

(c) Several shifts

The assumption that there is at most one shift in the time series can be
unrealistic for the study of climate time series. For example, although attention
for Pacific regime shifts originally focused on the 1976–1977 shift, it later became
clear that this was but one of a sequence of regime shifts that are now thought to
be associated with the PDO [2,4–6]. Several authors have developed techniques
facilitating the detection of several shifts in the mean or in a linear regression
model for climate-specific applications. Some authors have proposed using tests
developed to detect at most one shift and to apply them iteratively [1,51]. Model
selection approaches have also been used to detect the number of change points in
a model [52]. Lu et al. [53] combine a model selection approach with an algorithm
allowing the determination of the number and the positions of the change points.
Bayesian approaches have been developed for climate or hydrological applications
by Seidou & Ouarda [54] and Hannart & Naveau [55]. Techniques able to detect
several shifts in the mean or in a linear regression model have been useful to
study shifts in temperature, precipitation and climate indices such as the PDO
[1,10] and also useful to detect several shifts in streamflows [54,56].

(d) Non-normal distributions

Not all climatic time series are normally distributed. Examples of non-normal
distributions of climatic variables can be found in the study of Wilks [57],
e.g. the intensity of tornado counts (Poisson), wind speed (gamma), cloudiness
(beta) or climatic extremes (Weibull or generalized extreme value). Some authors
have developed techniques that can detect shifts in the parameter of different
distributions. Zhao & Chu [58] developed an approach to detect shifts in
hurricane counts by modelling the counts by a Poisson distribution, where the
intensity is represented by a gamma distribution. Jarušková [59], Jarušková &
Rencová [60], Zhao & Chu [61] and Dierckx & Teugels [62] presented approaches
to detect shifts in extreme events (e.g. typhoons, heavy rainfall, heat waves,
temperature extrema).

More generally, non-parametric approaches based on ranks, such as the change-
point method developed by Pettitt [63], are useful in detecting shifts in time
series without having parametric specifications. This method has been applied to
detect shifts in time series of precipitation and streamflows [64]. Lanzante [65]
also applied a non-parametric change-point method to detect artificial shifts in
radiosonde temperature.

(e) Autocorrelation

A common feature of climate time series is the time dependence in the
observations (autocorrelation), especially at the monthly or smaller time scale
[19]. The presence of strong positive autocorrelation creates patterns in time series
that can be easily confused with change points, especially if the magnitude of the
change point is small [17]. For example, figure 1f presents a series that is strongly
and positively autocorrelated. One can easily misinterpret the variations in this
Phil. Trans. R. Soc. A (2012)
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time series and identify apparent shifts, even though there are none. This is a
challenging problem in change-point detection, as most techniques were developed
for independent observations. In the presence of autocorrelation, the risk of false
detection tends to increase and the power of detection diminishes [18,66].

Several authors have proposed approaches that can take into account auto-
correlation when applying a test for a shift in the mean [21,67,68]. A detailed
example of the application of these methods is presented in Jandhyala et al. [69].
Seidel & Lanzante [70] integrated the autocorrelation in the SIC formulation
by using the concept of effective sample size. This approach allows a first-order
autocorrelation model (AR(1)) or a second-order autocorrelation model (AR(2))
to be taken into account in the analysis. More recently, Lund et al. [18] presented
an approach for detecting a shift in the intercept of a linear regression model
with periodicity and autocorrelation. Wang [19] extended the penalized maximal
t-test [33] to detect a shift in the mean that takes first-order autocorrelation into
account. Robbins et al. [71] proposed a test based on cumulative sums adjusted
for autocorrelation. Finally, Kirch [72] proposed an approach to approximate the
critical values in a change-point problem with dependent observations.

3. The informational approach

The previous section surveyed a number of change-point models that have proved
useful to study past changes in climate fields through the analysis of time
series. There are several approaches that have been presented in the statistical
literature to discriminate between these models, such as the likelihood-ratio
test [20], Bayesian approach [25], cumulative sums tests [29], wavelets [73] and the
informational approach [15]. A review of these approaches is presented in Chen &
Gupta [24]. In this paper, we focus on the informational approach, as it is a general
model selection technique that can be adapted to a diverse set of situations.
This approach was used by Karl et al. [74] and by Seidel & Lanzante [70]
to select among a hierarchy of piecewise regression models to explain changes
in global temperature. It was also used by Killick et al. [38] to detect shifts
in the variance of wave heights and by Beaulieu et al. [12] to discriminate between
models representing a constant mean, an abrupt shift in the mean, a simple linear
regression, a linear regression with abrupt shifts in the intercept and/or trend,
and a multiple linear regression with covariate effects and a shift in the intercept.
The models of Beaulieu et al. [12] were fitted to the land uptake of carbon, which
seems to have abruptly shifted after 1988 [75]. The informational approach is
also useful for climate time series, as their variability can be driven, for instance,
by volcanic eruptions, the El Niño Southern Oscillation, the PDO or the North
Atlantic Oscillation. Integrating these covariate effects allows one to explain a
part of the variability in the time series and to attribute the shifts detected to
other factors.

(a) General formulation of the informational approach

The proposed approach consists of the use of an information criterion to
identify the unknown position of the shift under a change-point model and to
discriminate, among a collection of models, the one that is the most likely to fit
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the data. The SIC, developed by Schwarz [76], and also commonly known as the
Bayesian information criterion, can be used to this end [14–16,24]. The general
formulation of the SIC to select among M models can be expressed by

SICj = −2 log L(Q̂j) + cj log n, j = 1, 2, . . . , M , (3.1)

where SICj is the SIC for model j , L(Q̂j) represents the maximum-likelihood
function for model j and cj is the number of parameters to be estimated for
model j . The SIC is based on the maximum-likelihood function of a given model
penalized by the number of parameters that are estimated in the model. The
model that minimizes the SIC is considered to be the most appropriate model. It
represents the best compromise between parsimony (few parameters) and good
fit (small residuals). The penalty term ensures that the model chosen does not
over-fit the data. For example, the SIC of the model with a constant mean and
variance (equation (2.1)) can be expressed as

SIC1 = n log(RSS1) + n(1 + log(2p)) + (2 − n) log(n), (3.2)

where RSS1 = ∑n
t=1(yt − ȳ)2 is the residual sum of squares, yt (t = 1, . . . , n)

are the observations, ȳ is the observation mean and n is the number of
observations. The SIC associated with the model representing a shift in the mean
(equation (2.2)) can be expressed as

SIC2(k) = n log(RSS2) + n(1 + log(2p)) + (3 − n) log(n), k = 2, . . . , n − 2,
(3.3)

where RSS2 = ∑k
t=1(yt − ȳ)2 + ∑n

t=k+1 (yt − ȳ)2 and where ȳ1 and ȳ2 are,
respectively, the sample means before and after the shift at time k. The
formulation has to be modified according to the number of parameters in the
model and to the residual sum of squares of each respective model. The most
likely position for a shift is selected as the one that minimizes the SIC, SIC2(p) =
min{SIC2(k), k = 2, . . . , n − 2}. The model with a change after time p is selected if

SIC2(p) < SIC1, (3.4)

otherwise, it seems more likely that there is no shift in the model [16]. The
advantage of using information criteria such as the SIC is that it provides a very
simple approach for exploring the presence of a change point in the data with no
need to resort to the significance level. However, when the SICs are very close,
one may question whether the small difference between the SICs might be due to
fluctuation in the data instead of a change. If one wants to conclude that there
is a change point with a significance level, then a critical value can be added to
the decision rule [15]. In this case, a model with a change after time p is selected
(with 1 − a confidence level) if

SIC2(p) + ca < SIC1. (3.5)

The critical values ca for different series lengths obtained through the asymptotic
distribution are presented in Chen & Gupta [15] and can also be obtained by
Monte Carlo simulations [12].
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(b) Integrating the autocorrelation

Change-point techniques based on the informational approach as presented in
Chen & Gupta [14] are based on the independence assumption. Here, we make an
extension for the presence of autocorrelation when detecting a shift in the mean.
We present the equations for an autoregressive model of order m (AR(m)). We
can rewrite the models with a constant mean (equation (2.1)) and a shift in the
mean (equation (2.2)) in the presence of autocorrelation as

yt = m +
m∑

i=1

riyt−i + 3t (t = 1, . . . , n), (3.6)

yt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m1 +
m∑

i=1

riyt−i + 3t (t = 1, . . . , p),

m2 +
m∑

i=1

riyt−i + 3t (t = p + 1, . . . , n),
(3.7)

where ri (i = 1, . . . , m) represents the autocorrelation coefficients and the errors
are independent and normally distributed (3t ∼ N (0, s2)). The SIC formulation for
the model with a constant mean and mth-order autocorrelation (equation (3.6))
would become

SIC3 = n log(RSS3) + n(1 + log(2p)) + (m + 2 − n) log(n), (3.8)

where RSS3 = ∑n
t=1(yt − m̂ − ∑m

i=1 r̂iyt−i)2 represents the sum of squares of the
residuals after fitting a model with a constant mean in the presence of mth-
order autocorrelation, and m̂, r̂1, . . . , r̂m are the maximum-likelihood estimators
of the model parameters (equation (3.6)). The last term of the equation
shows that there are m additional parameters to estimate (the autocorrelation
coefficients), as opposed to the SIC formulation of the corresponding model
without autocorrelation (equation (2.9)). The SIC for the model with a mean
shift in the presence of mth-order autocorrelation (equation (3.7)) would be

SIC4(k) = n log(RSS4) + n(1 + log(2p)) + (m + 3 − n) log(n),

k = m + 2, . . . , n − (m + 2), (3.9)

where RSS4 = ∑k
t=1 (yt − m̂1 − ∑m

i=1 r̂iyt−i)2 + ∑n
t=k+1 (yt − m̂2 − ∑m

i=1 r̂iyt−i)2

and m̂1, m̂2, r̂1, . . . , r̂m are the maximum-likelihood estimators of the model
parameters (equation (3.7)).

Following the same logic, it is also possible to integrate the autocorrelation
in simple linear regression models, and in multiple linear regression models with
covariate effects, and to allow the autocorrelation coefficients to change after
the shift. Regression models with autocorrelated errors can be estimated using
generalized least squares. We present the SIC for the linear regression models in
the presence of autocorrelation and for shifts in the autocorrelation in table 2.
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Table 2. List of models having mth-order autocorrelation in the errors and their associated
SIC formulation. All these models rely on the assumption that the random errors are independent
and identically normally distributed (3t ∼ N (0, s2)).

model description (and notation) equations

constant mean and mth-order
autocorrelation

yt = m +
m∑

i=1

riyt−i + 3t (t = 1, . . . , n), (3.10)

SIC = n log(RSS) + n(1 + log(2p)) + (m + 2 − n) log(n),

RSS =
n∑

t=1

(
yt − m̂ −

m∑
i=1

r̂iyt−i

)2

,

where m̂ and r̂i (i = 1, . . . , m) are the maximum-likelihood
estimates of m and ri (i = 1, . . . , m)

shift in the mean and mth-order
autocorrelation

yt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m1 +
m∑

i=1

riyt−i + 3t (t = 1, . . . , p),

m2 +
m∑

i=1

riyt−i + 3t (t = p + 1, . . . , n),
(3.11)

SIC(p) = n log(RSS) + n(1 + log(2p)) + (m + 3 − n) log(n),

RSS =
p∑

t=1

(
yt − m̂1 −

m∑
i=1

r̂iyt−i

)2

+
n∑

t=p+1

(
yt − m̂2 −

m∑
i=1

r̂iyt−i

)2

,

where m̂1, m̂2 and r̂i (i = 1, . . . , m) are the maximum-likelihood
estimates of m1, m2 and ri (i = 1, . . . , m)

shift in the mean and shift in the
mth-order autocorrelation

yt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m1 +
m∑

i=1

r1iyt−i + 3t (t = 1, . . . , p),

m2 +
m∑

i=1

r2iyt−i + 3t (t = p + 1, . . . , n),
(3.12)

SIC(p) = n log(RSS) + n(1 + log(2p)) + (2m + 3 − n) log(n),

RSS =
p∑

t=1

(
yt − m̂1 −

m∑
i=1

r̂1iyt−i

)2

+
n∑

t=p+1

(
yt − m̂2 −

m∑
i=1

r̂2iyt−i

)2

,

where m̂1, m̂2, r̂1i (i = 1, . . . , m) and r̂2i (i = 1, . . . , m) are the
maximum-likelihood estimates of m1, m2, r1i (i = 1, . . . , m) and
r2i (i = 1, . . . , m)

intercept and linear trend with
mth-order autocorrelation

yt = l + bt +
m∑

i=1

riyt−i + 3t (t = 1, . . . , n), (3.13)

SIC = n log(RSS) + n(1 + log(2p)) + (m + 3 − n) log(n),

RSS =
n∑

t=1

(
yt − l̂ − b̂t −

m∑
i=1

r̂iyt−i

)2

,

where l̂, b̂ and r̂i (i = 1, . . . , m) are the maximum-likelihood
estimates of l, b and ri (i = 1, . . . , m)

(Continued.)
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Table 2. (Continued.) .

model description (and notation) equations

shift in the intercept and same
linear trend with mth-order
autocorrelation yt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

l1 + bt +
m∑

i=1

riyt−i + 3t (t = 1, . . . , p),

l2 + bt +
m∑

i=1

riyt−i + 3t (t = p + 1, . . . , n),
(3.14)

SIC(p) = n log(RSS) + n(1 + log(2p)) + (m + 4 − n) log(n),

RSS =
p∑

t=1

(
yt − l̂1 − b̂t −

m∑
i=1

r̂iyt−i

)2

+
n∑

t=p+1

(
yt − l̂2 − b̂t −

m∑
i=1

r̂iyt−i

)2

,

where l̂1, l̂2, b̂ and r̂i (i = 1, . . . , m) are the maximum-
likelihood estimates of l1, l2, b and ri (i = 1, . . . , m)

shift in both the intercept and
linear trend with mth-order
autocorrelation yt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

l1 + b1t +
m∑

i=1

riyt−i + 3t (t = 1, . . . , p),

l2 + b2t +
m∑

i=1

riyt−i + 3t (t = p + 1, . . . , n),
(3.15)

SIC(p) = n log(RSS) + n(1 + log(2p)) + (m + 5 − n) log(n),

RSS =
p∑

t=1

(
yt − l̂1 − b̂1t −

m∑
i=1

r̂iyt−i

)2

+
n∑

t=p+1

(
yt − l̂2 − b̂2t −

m∑
i=1

r̂iyt−i

)2

,

where l̂1, l̂2, b̂1, b̂2 and r̂i (i = 1, . . . , m) are the maximum-
likelihood estimates of l1, l2, b1, b2 and ri (i = 1, . . . , m)

4. Applications

(a) Atmospheric carbon dioxide concentrations at Mauna Loa

The atmospheric CO2 concentration at Mauna Loa has been expressed as a
superposition of a linear and quadratic trend [77]. Lund & Reeves [49] applied
a change-point detection approach to annual CO2 concentrations at Mauna Loa
by fitting a regression model with a linear and a quadratic trend and searching
for a shift in the regression coefficients. A shift in 1989 was detected in the
three regression coefficients (intercept, linear trend and quadratic trend) with
a 95% confidence level. To compare the two models, Lund & Reeves [49] used
a maximum Fisher statistic. Here, we refine this change-point analysis using
the observations until 2010 by fitting not only the same models as Lund &
Reeves [49], but also models with a change point only in the intercept, in
the linear trend, in the quadratic trend or a combination of these, in order
to investigate whether the shift occurs in all the regression coefficients and

Phil. Trans. R. Soc. A (2012)

 on January 30, 2012rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Change-point detection in climate 1239

1960 1970 1980 1990 2000 2010
310

320

330

340

350

360

370

380

390

400

year

at
m

os
ph

er
ic

 C
O

2 c
on

ce
nt

ra
tio

n 
at

M
au

na
 L

oa
 (

pp
m

)

Figure 2. Monthly CO2 concentrations at Mauna Loa and model leading to the smallest SIC:
a regression model with a linear and a quadratic trend with a change point in the intercept
and quadratic trend in 1991 (red dashed line). The small black dots represent the annual CO2
concentrations at Mauna Loa. (Online version in colour.)

whether we could simplify the model. We apply these models to annual CO2
concentrations at Mauna Loa for the period 1959–2010 from the National
Oceanic and Atmospheric Administration, Earth System Research Laboratory
[78] (available at http://www.esrl.noaa.gov/gmd/ccgg/trends/; see figure 2). The
models fitted to the data and their associated SIC are presented in table 3. The
model leading to the smallest SIC is also represented in figure 2. The most likely
model has a shift in 1991 in both the intercept and the quadratic trend coefficient,
but the linear trend coefficient remains the same after the shift. This model has
an SIC of 64, which is very close to the model with a shift in the three parameters,
with an SIC of 68. However, this model should be chosen as it is a simpler model
with fewer parameters. It is also very close to the SIC of the model with a shift
in both the intercept and the linear trend coefficient (SIC of 65). As these two
models are very similar and have the same number of parameters, they might
be equally good for representing annual CO2 concentrations at Mauna Loa. Both
these models are simpler than the one fitted in Lund & Reeves [49], and the
change-point timing coincides with the Mount Pinatubo eruption that occurred
in 1991.

(b) Interhemispheric gradient of D14C

The D14C of CO2 (D14C for short here) is a widely used tracer of past climate
changes for both the ocean and the atmosphere. We analyse the interhemispheric
gradient of D14C over the period 850–1830 covering the Medieval Climate
Anomaly (approx. 950–1250) and the Little Ice Age (approx. 1500–1800) using
INTCAL04 [79] and SHCAL04 [80] tree-ring data. The D14C seems to have shifted
abruptly in the transition between the Medieval Climate Anomaly and the Little
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Table 3. Results of the two examples of applications: models fitted to the annual CO2 concentrations
at Mauna Loa (1959–2010) and to the interhemispheric gradient of D14C (950–1830), the year of
the most likely change and the associated SIC.

application model year SIC

CO2 concentrations
at Mauna Loa

yt = l + bt + ht2 + 3t (t = 1, . . . , n) — 118.16

yt =
{

l1 + bt + ht2 + 3t (t = 1, . . . , p)
l2 + bt + ht2 + 3t (t = p + 1, . . . , n)

1992 92.60

yt =
{

l1 + b1t + ht2 + 3t (t = 1, . . . , p)
l2 + b2t + ht2 + 3t (t = p + 1, . . . , n)

1991 65.31

yt =
{

l1 + bt + h1t2 + 3t (t = 1, . . . , p)
l2 + bt + h2t2 + 3t (t = p + 1, . . . , n)

1991 64.06a

yt =
{

l1 + b1t + h1t2 + 3t (t = 1, . . . , p)
l2 + b2t + h2t2 + 3t (t = p + 1, . . . , n)

1991 68.02

interhemispheric
gradient of 14CO2

yt = m + 3t (t = 1, . . . , n) — 747.73

yt =
{

m1 + 3t (t = 1, . . . , p)
m2 + 3t (t = p + 1, . . . , n)

1375 690.16

yt = m +
2∑

i=1
riyt−i + 3t (t = 1, . . . , n) — 475.72

yt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m1 +
2∑

i=1
riyt−i + 3t (t = 1, . . . , p)

m2 +
2∑

i=1
riyt−i + 3t (t = p + 1, . . . , n)

1600 468.68

yt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m1 +
2∑

i=1
r1iyt−i + 3t (t = 1, . . . , p)

m2 +
2∑

i=1
r2iyt−i + 3t (t = p + 1, . . . , n)

1455 430.95a

aModel leading to the smallest SIC.

Ice Age [81,82] (figure 3). Rodgers et al. [82] found a shift in 1375 by applying the
test for an abrupt shift in the mean developed by Worsley [20] and by performing
Monte Carlo simulations to get the critical values that take into account the
autocorrelation in the residuals, as Worsley’s test relies on the independence
assumption of the residuals. Here, we apply the informational approach to search
for a shift in the mean and simultaneously integrate the autocorrelation in
the analysis. We also consider the possibility of a shift in the autocorrelation
parameters. Table 3 presents the models fitted and the associated SIC. First,
we fit a model without and with a shift in the mean and find that the most
likely time for a shift would be in 1375, as presented in Rodgers et al. [82].
However, the residuals follow a second-order autoregressive model [82]. Thus, we
fit a model with and without a shift in the mean and a second-order autoregressive
model (table 3). We fitted models for which the parameters of the second-order
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Figure 3. Interhemispheric gradient of D14C. The vertical black lines represent the end of the
Medieval Warm Anomaly and the beginning of the Little Ice Age. The coloured (grey) vertical
lines represent the time of the shift detected using a model that (i) does not take into account the
autocorrelation (blue, 1375) and (ii) takes into account the autocorrelation (red, 1455). The dotted
horizontal lines represent the mean before and after the shift for the two models. (Online version
in colour.)

autoregressive model remain the same before and after the shift and a model for
which the parameters also change along with the shift in the mean. According
to the SIC, it is most likely that the mean of the D14C and its autocorrelation
parameters abruptly shifted in 1455. This result is slightly different from the
result of Rodgers et al. [82], but is still in agreement, as the shift is detected
during the transition period between the Medieval Warm Period and the Little
Ice Age. The magnitude of the shift remains the same (2 ‰) and is approximately
one standard deviation (1 s.d.). The advantage of the present methodology is the
simultaneous estimation of the change-point position and the autocorrelation,
which allows one to avoid interference while estimating them.

(c) Length of time series and shift detection

In order to determine how many years of observations are required to detect an
abrupt shift, we carry out a simulation study using the change-point methodology
described in the previous section. This example is motivated by time series of
atmospheric CO2 growth rates, measured since 1958 at Mauna Loa, as well
as the uptake of carbon by the land, and thought to have experienced an
abrupt shift around 1990 [12,75]. Cermak et al. [11] also detected an abrupt
shift in the early 1990s in trends of aerosols and clouds. Thus, we generate
synthetic series of annual ‘observations’ corresponding to the years 1961–2100.
We set an abrupt shift in the mean in the year 1990. We vary the magnitude
relative to the s.d. (D = |m1 − m2|/s) from 0.5 to 3. We use this formulation
to ease comparison with other time series. The synthetic series generated are
normally and independently distributed with a mean of zero and a s.d. of
one. For each combination of magnitude and number of years after the shift,
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Figure 4. (a) Examples of synthetic series generated for 1961–2100 without any shift introduced
(D = 0) and with a shift in 1990 of different magnitudes relative to the s.d. (D = 1, 2, 3). (b) Hit rates
obtained in the presence of a shift in 1990 of several magnitudes when applying the technique to
the synthetic series from 1961 to 1992, 1994, 1996, 1998, 1990, . . ., 2100. The dotted lines represent
the hit rates obtained when applying the SIC test (95% confidence level). (c) Percentage of false
detections when applying the technique to synthetic series without any shift for different periods.
(Online version in colour.)

we generate 2000 synthetic series. We also generated 2000 synthetic series
without introducing any shifts. Figure 4a presents examples of the synthetic series
generated.

We apply the change-point method to detect a shift in the mean of independent
observations (equations (3.2) and (3.3)) to the synthetic series generated for the
1961–1992 period only, 1961–1994 only and so on until 1961–2100. We use the
two decision rules based on the SIC values of the two models only (equation (3.4))
and based on a 95% confidence level (equation (3.5)). In the rest of the paper,
we denote these decision rules as decision rule 1 and decision rule 2, respectively.
We use this approach in order to determine how soon the shifts are detectable.
We compute the hit rates, which we define as: the percentage of cases in the 2000
synthetic series for which the model with a shift in the mean is selected and the
shift detected is located at most 2 years away from the real shift in 1990. The 2
years rule was used in several studies comparing techniques for the detection of
artificial shifts in temperature and precipitation [35,66,83] and provides a measure
of the power of detection of the technique.

Figure 4b presents the results of this simulation study. It shows that shifts of
any magnitude are detectable soon after their occurrence. For very large shifts
(with a magnitude that is three times the s.d.), the hit rate reaches 99 per cent
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only 4 years after the shift occurs if decision rule 1 is used, and 6 years after
the shift occurs with decision rule 2. For shifts having a magnitude of 2 s.d., the
hit rate reaches 90 per cent after 4 years (decision rule 1) and after 10 years
(decision rule 2). For shifts of a magnitude the same as the s.d., the hit rate is
approximately 50 per cent after 6 years and keeps increasing until 60 per cent
after 100 years (decision rule 1). If decision rule 2 is used, the hit rate is much
smaller (50% after 40 years). For shifts with a magnitude smaller than the s.d.
in the series, the hit rate remains very small: 40 per cent for a magnitude of 0.75
and 20 per cent for a magnitude of 0.5 (decision rule 1). The hit rates are even
smaller when decision rule 2 is used. In general, if the shift is not detected after 30
years of observations, the probability of detecting it will not increase much with
more observations. Hence, the probability of detecting a shift depends mainly on
the magnitude of the shift and less on the length of the time series.

We repeat the exercise with the synthetic series in which we did not introduce
any shift. We compute the percentage of false detections: the cases for which a
model with a shift is selected. Figure 4c presents the percentage of false detections
according to the length of the synthetic series. If decision rule 1 is used, the
overall risk of false detection (integral under each curve) is very high for small
samples (50% for the 1961–1992 sample) and decreases with larger samples (38%
for the 1961–2100 sample). However, this high percentage of false detection is
inflated by the higher risk of false detection at the beginning or end of the time
series. When analysing a shift that could have occurred in 1990, we can see that
the risk of false detection is very high if we perform the analysis for shorter
periods (1961–1992 and 1961–2000). However, if the time series lasts until 2010
or longer, then the risk of false detection becomes approximately 2 per cent or
even smaller. If decision rule 2 is used with a 95% confidence level, there is
a very small overall risk of false detection (2% for the 1961–2100 sample and
less for smaller samples). One can expect a higher risk of false detection and a
higher probability of detecting a shift when performing the analysis with a smaller
confidence level. Similarly, one can expect a smaller risk of false detection and
a smaller probability of detecting a shift when performing the analysis with a
higher confidence level.

5. Discussion and conclusion

In this paper, we reviewed commonly used change-point models to study past
changes in climate-related variables and demonstrated their use in a number
of applications. We gave a detailed explanation of change-point methodology
based on the informational approach and provided an extension to take into
account mth-order autocorrelation in the detection of a shift in the mean and of
a shift in the coefficients of a simple linear regression, and to detect a shift in the
mean and in the autocorrelation. In order to show the flexibility of the proposed
approach, we presented an example of an application to the CO2 concentrations at
Mauna Loa, which we modelled by the sum of a linear and a quadratic trend and
which showed a shift in the regression coefficients in 1991. A second application
to the interhemispheric gradient of D14C shows an abrupt shift in the mean
and in the autocorrelation parameters occurring during the transition from the
Medieval Climate Anomaly and the Little Ice Age, which agrees with the results
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of Turney & Palmer [81] and Rodgers et al. [82]. These examples showed that
the proposed methodology can be easily adapted to several cases that might be
encountered in climatic time series.

It is of critical importance to be able to detect abrupt shifts very soon after
they have occurred (e.g. climate monitoring). Thus, we have verified by simulation
how long it would take to detect an abrupt shift in the mean having different
magnitudes. To make a realistic case study, we have generated synthetic time
series covering the period 1961–2100 and introduced a shift in 1990, because a
few studies show evidence for abrupt shifts around this time. This method shows
the potential to start analysing shifts that might have occurred around 1990 if
the observations started in 1961 or earlier. Hence, we have good chances to start
detecting the shifts with a magnitude of at least 1 s.d. with both decision rules
(with and without a confidence level associated). Shifts having a small magnitude
(less than 1 s.d.) will be more difficult to detect, especially if decision rule 2 is
used. Thus, for monitoring small shifts, decision rule 1 might be better. However,
one should be cautious when using decision rule 1 because of the high risk of
false detection. This is especially true if a shift is detected close to the beginning
or end of the series, as the risk of false alarm is higher. To obtain a significance
level associated with the change-point analysis, we have shown that this can
be included through the decision rule. The critical values for the SIC test to
search for a shift in the mean and/or in the variance are presented by Chen &
Gupta [14]. The critical values for different change-point models can be obtained
easily through Monte Carlo experiments. The choice between the two different
decision rules should depend on the context and need of different applications.

Other model selection approaches could be used, such as reversible jump
Markov chain Monte Carlo [84], birth–death Markov chain Monte Carlo [85],
the deviance information criterion [86] or the minimum description length [87].
However, there is no study comparing these model selection approaches for
discriminating between several change-point models. Comparative simulation
studies should be performed in order to identify the advantages and disadvantages
of several model selection approaches for change-point detection. A number of
efforts have been dedicated to identifying the best-performing homogenization
techniques for temperature and/or precipitation [34,35,66,83]. These types of
comparison studies would also benefit the development of optimal methods for
change-point detection in the climate system.

Change-point analysis is a tool that can be used to describe past climate
variations. Change-point techniques are not intended to have predictive skill with
respect to future shifts. More significant development would be necessary in order
to develop a framework for monitoring shifts and predicting them in advance.
Techniques able to provide early warning signals for tipping points in the climate
and ecosystems are presented by Livina & Lenton [88], Dakos et al. [89], Scheffer
et al. [90], Lenton et al. [91] and Sieber & Thompson [92]. The shifts discussed
in this paper cannot be predicted in advance with these early warning signal
methods, as they are not accompanied by a critical slowing down.
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