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Abstract. Global climate change is expected to affect the lenges trend detection in these observational time series. We
ocean’s biological productivity. The most comprehensive in-further demonstrate how discontinuities in the time series at
formation available about the global distribution of contem- various points would affect our ability to detect trends in
porary ocean primary productivity is derived from satel- ocean chlorophylk. We highlight the importance of main-
lite data. Large spatial patchiness and interannual to multitaining continuous, climate-quality satellite data records for
decadal variability in chlorophylt concentration challenges climate-change detection and attribution studies.

efforts to distinguish a global, secular trend given satellite
records which are limited in duration and continuity. The
longest ocean color satellite record comes from the Sea-

viewing Wide Field-of-view Sensor (SeaWiFS), which failed 1 Introduction

in December 2010. The Moderate Resolution Imaging Spec-

troradiometer (MODIS) ocean color sensors are beyond theifslobal climate change is predicted to alter the ocean’s bio-
originally planned operational lifetime. Successful retrieval logical productivity with implications for fisheries and cli-

of a quality signal from the current Visible Infrared Imager Mate. Results of coupled physical-biogeochemical models
Radiometer Suite (VIIRS) instrument, or successful launchare sometimes inconsistent in their estimate of the mag-
of the Ocean and Land Colour Instrument (OLCI) expectednitude and location of changes in marine primary produc-
in 2014 will hopefully extend the ocean color time series tion, depending on the region (e.g. Steinacher et al., 2010).
and increase the potential for detecting trends in ocean proLong-term (100yr), rapidly declining trends in phytoplank-
ductivity in the future. Alternatively, a potential disconti- ton have been suggested through examination of shipboard
nuity in the time series of ocean chlorophyll introduced =~ Mmeasurements (Boyce et al., 2010). However, several au-
by a change of instrument without overlap and opportunitythors have contested the methodology and implications of
for cross-calibration, would make trend detection even morethis study, some arguing that the long-term trend detected
challenging. In this paper, we demonstrate that there are & an artifact of changes in the measurement techniques
few regions with statistically significant trends over the ten (Rykaczewski and Dunne, 2011; Mackas, 2011), and others
years of SeaWiFS data, but at a global scale the trend is nd€porting increases in chlorophyll (hereafter chlorophyll)
large enough to be distinguished from noise. We quantify theconcentrations for regions that have been studied with con-

degree to which red noise (autocorrelation) especially chalsistent sampling methods over multi-decadal scales (e.g. Karl
et al., 2001; Corno et al., 2007; Aksnes and Ohman, 2009;
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Lomas et al., 2010; Saba et al., 2010; McQuatters-Gollop etnternal variability is also produced by coupled interactions
al., 2011). between components of the climate system, such as climate
Satellite-derived ocean color and temperature data allowoscillations (Hegerl et al., 2007). There is a great risk of mis-
comprehensive estimates of the global distribution of ocearinterpreting changes in a relatively short time series when
primary productivity, estimated from data provided by the red noise is present, as it creates patterns that may be inter-
Coastal Zone Color Scanner (CZCS), Ocean Color and Tempreted as trends or shifts with underlying mechanistic causal-
perature Sensor (OCTS), Sea-viewing Wide Field-of-viewity, but that are generated from a random process (e.g. Wun-

Sensor (SeaWiFS), Moderate Resolution Imaging Spectrorasch, 1999; Rudnick and Davis, 2003).
diometer (MODIS) and Medium Resolution Imaging Spec- Long-term trends are detectable if the signal-to-noise ratio
trometer (MERIS) ocean color instruments. These data sets large enough and a sufficient number of observations are
have allowed many scientific advances over the past decadesvailable. Recent studies suggest that climate-change driven
as illustrated, for example, in McClain (2009). The CZCS trends in satellite ocean color and inferred productivity are
sensor generated the first satellite ocean color data fronmot yet distinguishable from red noise (Henson et al., 2010;
November 1978 to June 1986; although focused primarilyYoder et al., 2010). Due to the degree of internal variabil-
on coastal regions, CZCS also provided a picture of globality in ocean productivity time series, approximately 39 yr of
patterns. However, it is not possible to determine trends froncontinuous data could be necessary to detect global climate-
the CZCS record; the mission was a proof-of-concept, ancchange-driven trends in ocean chlorophyll concentration and
thus the sensor was not continuously validated and suspectgatimary production (with a probability of detection of 0.9 and
to drift after the first year of operation (Hooker and McClain, a significance level of 5%) (Henson et al., 2010). This time
2000; NRC, 2004). Ten years later the OCTS was launchedrame assumes no interruption in satellite data — an unlikely
and operated from July 1996 to June 1997. SeaWiFS becam&cenario given the age of the current ocean color satellites
operational in September 1997 and remained remarkably stgMODIS) and the unproven potential for VIIRS to provide
ble for a decade, offering new opportunities for ocean bio-the necessary data quality. The European Space Agency and
geochemistry and climate research. Nevertheless, SeaWiFBe European Organisation for the Exploitation of Meteoro-
began having telemetry problems in January 2008 and failedogical Satellites are planning the launch of the Ocean and
completely in December 2010. Three other ocean color sentand Colour Instrument (OLCI) in 2013. If this is unsuc-
sors, MODIS-Terra, MERIS and MODIS-Aqua have been cessful or MODIS fails before OLCI is operational, a dis-
operating since December 1999, March and July 2002, reeontinuity due to the change of instrument in the time series
spectively, but MERIS failed in May 2012. Several years of could seriously inhibit our ability to detect trends in ocean
overlap between SeaWIFS and MODIS-Aqua allowed suc-chlorophyll and productivity. Similarly, when OLCI exceeds
cessful cross-calibrations to merge data from the two senits lifetime, a gap before launching a future satellite would
sors (e.g. Fargion and McClain, 2003; Maritorena and Siegelagain affect our ability to detect trends. Additional satellites
2005; Pottier et al., 2006; Meister et al., 2012), increasing outhave been launched or planned, but if the measurements are
potential for the detection of secular trends in ocean chloro-not made available for cross-calibration, the issue of potential
phyll. However, MODIS Aqua and Terra are now beyond discontinuity remains. Discontinuity can be introduced in the
their operational lifetimes. Another ocean color instrument, satellite records when a change of instrument occurs without
the Visible Infrared Imager Radiometer Suite (VIIRS), is cur- an overlapping period during which the sensors in orbit may
rently operational, but the data quality is, as of yet, undeter-be cross-calibrated. While not ideal, the discontinuity due to
mined. a change of sensor might be estimated with some degree of
Several authors have studied these satellite records in ordemcertainty even without a period of overlap through careful
to investigate trends in global ocean chlorophyll concentra-calibration in orbit. However, with a period of overlap in or-
tion and primary productivity (Gregg et al., 2005; Antoine bit, discontinuities between sensors could be more accurately
et al., 2005; Behrenfeld et al., 2006; Vantrepotte ariiy] characterized through cross-calibration. Then, the magnitude
2009; Siegel et al., 2013) and to examine natural variabilityand uncertainty of the discontinuity can be incorporated in
at the interannual and decadal time scales (Yoder and Kerthe regression model used to detect long-term trends.
nelly, 2003; Martinez et al., 2009). However, none of these Discontinuities challenge the detection of trends in climate
studies explicitly considers how the presence of autocorredata since the discontinuity effect represents an additional
lation may bias the ability to detect significant trends in the parameter that must be estimated along with the magnitude
data. In climate time series, the autocorrelation is often repreeof the trend, and therefore, longer time series of observations
sented by a first-order autoregressive process (red noise). Thare required to achieve the same level of statistical confi-
red noise arises from temporal persistence and it roughly apeence (Box and Tiao, 1975; Tiao et al., 1990; Weatherhead
proximates internal variability in the climate system in which et al., 1998). For example, Weatherhead et al. (1998) esti-
slower response components such as the ocean and large in®ated that in the worst-case scenario, a discontinuity could
sheets provide memory by responding slowly to a white noiseéincrease the number of years of data necessary to detect a
forcing coming from weather systems (Hasselmann, 1976)linear trend (with a probability of detection of 90 %) by as
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much as 50 %. Any potential discontinuity in satellite ocean
color data must be taken into account in assessing the numb

of years of observations necessary to distinguish trends fron 440
internal variability in ocean chlorophyll and productivity.

The general objective of this study is to investigate the sta- |
tistical factors that challenge the detection of trends in ocear®
color data and show why globally, and in most ocean basins §
linear trends are not yet distinguishable from red noise (i.e. 40514+« si p Rt i i ,
the internal variability) on a statistical basis. We use general- i S
ized least squares regression to detect trends in ocean chlor 80°
phyll satellite data and test the hypothesis that those trends

detected are not an artifact of red noise. We quantify howfi9- 1. Map of the 14 ocean biomes used in the analysis (1) High-
a discontinuity in the time series would affect our ability to latitude North Pacific, (2) Oligotrophic North Pacific, (3) Equatorial

. - - Pacific, (4) Oligotrophic South Pacific, (5) Southern Ocean Pacific,
detect trends in ocean chlorophyll concentration given the 6) High-latitude North Atlantic, (7) Oligotrophic North Atlantic,

observed variability and the expected trends estimated fro 8) Equatorial Atlantic, (9) Oligotrophic South Atlantic, (10) South-

arange Of_ ocean models. More specifically, we assess oW, gcean Atlantic, 11) Arabian Sea, (12) Bay of Bengal, (13) Olig-
many additional years of satellite data would be needed Qtrophic Indian, (14) Southern Ocean Indian.

detect a trend if the current satellite fails before new satellite

data are available. We also quantify how red noise affects the

number of years of observations needed to detect trends iB.2 Trend detection in presence of autocorrelation and
ocean chlorophyll concentration. discontinuity

A linear temporal trend can be expressed as

2 Data and methods yi=p+ot+ N, 1)

wherey; is the data (chlorophyll concentration) at timeu
is the interceptw is the trend andV; represents the resid-

. ual noise at time. This regression model was used in Hen-
We use monthly mean chlorophyll concentration datag,p, et a1, (2010) to represent trends in monthly mean chloro-
covering the January 1998-December 2007 periodyhy ) and productivity data. When this model is fitted using
collected by SeaWiFS (version R2010.0; available atyginary least squares regression (OLS), it is assumed that
http://oceancolor.gsfc.nasa.gpwveraged globally and in - yhe residuals are independent (white noise). However, it is

14 b|omes (shown in Fig. 1). The biome d_ef|n|t|on separqtesbnen not reasonable to assume that successive observations
the regions where phytoplankton growth is seasonally lightyt monthly chiorophyll concentration are independent from
limited (for mid to high latitudes), regions where the ocean gach gther since there is memory being carried from month
is gaining heat (equatorial regions) and oligotrophic regionsy, month (red noise). In the presence of red noise, OLS tends
(Henson et al., 2010). Observations taken after 2007 werg, njerestimate the variance and therefore inflates the test

not used as they are not continuous due to intermittentasistics on the regression coefficients, so that a trend can
problems with the SeaWiFS instrument. The seasolnal Cyc'%ppear statistically significant when it is not (e.g. Wunsch,
was removed from the monthly means by subtracting fromlggg).

each month the mean of all observations taken during the technically, we assume that the errors follow a first-order
same month for all years. To estimate long-term trends 'nautoregressive process (AR(1)):

surface ocean chlorophyll, we use the same three coupled

physical-biogeochemical models as presented in Henson &V, = ¢ N,_1 + ¢, )

al. (2010): GFDL-TOPAZ (Dunne et al., 2005, 2007), IPSL-

PISCES (Aumont and Bopp, 2006) and NCAR-CCSM3 Whereg is the first-order autocorrelation aadare normally
(Doney et al., 2009; Thornton et al., 2009). We estimatedistributed random errors (white noise) with a mean of zero
the trends in future climate change simulations forced withand a common variance of?. It should be noted that the

the IPCC A2 global warming scenario from 2001-2100 variance of the white noise process)(is directly related to
(28.9GtCyr! from fossil fuel emissions by 2100). This the variance of the noiseV{) by

scenario represents high cumulative carbon emissions due

to human population growth and an increasing gap betweens = 02/ (1 - ¢2) . (3)

the industrialized and developing nations (Nakicenovic et

al., 2000). More details of the three model projections andwherea,%, is the noise variance. In this case, the first-order
biome definition are presented in Henson et al. (2010). autoregressive process expresses the strength of the memory

2.1 Data and models

www.biogeosciences.net/10/2711/2013/ Biogeosciences, 10, 27212013
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being carried from one month to the other. The decorrela-absolute terms (e.g. changes in chlorophyll concentration in
tion time (or the time it will take in months to forget the mg 3 per year) or in relative terms (e.g. changes in percent
current state of the process) is a more tangible measure gfer year or per decade). The factor 3.3 accounts for a power
the strength of the memory and is expressed as a function abf detection of at least 0.90 and a significance level of 5 % (or
the first-order autocorrelation valgél + ¢) / (1 — ¢)). The a confidence level of 95 %) (Tiao et al., 1990; Weatherhead et
regression parameters and their associated variance can &, 1998). The null hypothesis for the regression is that there
estimated using generalized least squares regression (GL$ no trend. The significance level is the probability of incor-
to account for the presence of autocorrelation in the errorsrectly rejecting the null hypothesis when, in fact, it is true
To simplify these expressions we use matrix notation here(false positive rate). The power of detection is the probabil-
In matrix notation, the regression model presented in Eq. (1)ty that the regression analysis will reject the null hypothesis

is when there is a trend (true positive rate). This means that if
GLS regression is applied using a 5% significance level to
y=Xb+N, 4) thousands of series having an approximate lengtii*afnd

h is th . , ) with the same parameters as presented in Eq. (8) (i.e. a lag-1
wherey is then x 1 data vectorX is a nx 2 design matrix 5 1correlation of, a variance of 2 and a trend with a mag-

with Ones in the first column and _the time_ in the second COI'nitude ofwp), in at least 90 % of the cases the trend would be
umn, b is a 2 1 vector representing the intercept and trend yetected if it exists. For a smaller significance level and/or a

andN is an x 1 vector representing the noise. The general-|arger probability of detection* would increase.
ized least squares parametess gnd their varianceX (b)) If a change of instrumentation or measurement procedures
are given by occurs, a discontinuity might be introduced in the observa-
1 tions and should be taken into account in the trend detection.
b= (X/Sflx) X's™ty (5)  Anindicator function representing the effect of the change
can be added to the model:

-1
V(b) = (x/s‘lx) , 6) vi=p+owr+8h+N, )
whereSis then x n error-covariance matrix. The entriesin [0, 1< Ty 10
the error covariance matrix represent the covariance of two’ =~ |1, (> Ty’ (10)

errors depending on their separation in timme~or a first- ) ] . ]
order autoregressive process, the covariance of two residual¥nerel; is a binary variable having a value of zero before the
separated by time units (months in this case) can be ex- discontinuity and one aftefy represents the number of ob-

pressed as servations before the discontinuity ahdepresents the mag-
nitude (or the effect) of the discontinuity. The fraction of data

C(N¢,Niyg) =C(Nyy Ni_y) = gf,qsf. ) before the discontinuity can be represented by

More details on GLS estimation can be obtained in Brock-7 = (To—1)/n (11)

well and Davis (2002). Statistical analyses of chlorophyll

concentrations are sometimes performed on Iog-transforme‘c’i\lheren s the total number of observations.
data (e.g. Campbell, 1995). However, a log-transformation Weatherhead et al. (1998) provided an estimate’ givith

did not help in stabilizing the variance of the model errorsa specified trend magnitude ab) in the presence of a dis-

. L continuity. They showed that* is larger in comparison to
or making them more normally distributed, so we used the . -
. L continuous data due to the additional paramégth@t needs
untransformed chlorophyll concentration by principle of par-

to be estimated and depends on the time of the discontinuity:

simony.
Tiao et al. (1990) developed a simple equation allowing
the estimation of the number of observations required to dis- 5
tinguish a trend (with a specified magnitudexgy) from red n* 330y / 1+¢ 1 . (12)
noise. The number of observations required depends on the lwo| | 1—-¢ [1-3c(1- r)]%

signal-to-noise ratio and on the desired confidence level an

power of detection for the test. It can be expressed as (ijt is important to note the distinction between a discontinu-

ity and a gap. In the context of satellite data, a discontinu-
ity would occur if no cross-calibration between one instru-

2
. |:3.30N 1~|—¢} ’ ®) ment and another was possible. In this casecan be es-
Vi-9¢ |’

|awo timated using Eq. (12). In the presence of a gap only (i.e.
the measurements are taken with the same instrument, but
wheren* is the number of observations required to detectthere is a gap in the time serie®); can be estimated us-
the trend. The magnitude of the trend can be expressed ing Eg. (8) as there is no discontinuity effect to estimate.
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Furthermore, it must be noted that the timing of the discon- Global High latitude North Atantic Equatorial Atlantic
tinuity (7o) is known since we assume the discontinuity is _ 4 * 4
caused by a change of instrument. However, if the timingz WWNWM : éwwi . ?’W'VAM
of the discontinuity is unknown and needs to be estimated 2 2

. | bl d h . d | d d 98 2000 2002 2004 2006 2008 1998 2000 2002 2004 2006 2008 1998 2000 2002 2004 2006 2008
Eq (12) IS nOt app |Ca € an teC nlques eve Ope tO € Oligotrophic North Atlantic Southern Ocean Atlantic Oligotrophic South Atlantic
tect undocumented discontinuities would be required. Suct
techniques have been developed for in situ climate data fos 2| 2 ) - i by | |
example (e.g. Peterson et al., 1998; Beaulieu et al., 2008). - -2 -2
%98 2000 2002 2004 2006 2008 1998 2000 2002 2004 2006 2008 1998 2000 2002 2004 2006 2008
2 3 EStImatIOI’] Of tl’endS and I’]OISG II’] ocean CO|0I’ High latitude North Pacific Equatorial Pacific Oligotrophic North Pacific

satellite data and biogeochemical models . .
-2| -2|

To test for the presence of global and regional trends in ocea . .

. . . . 98 2000 2002 2004 2006 2008 1998 2000 2002 2004 2006 2008 1998 2000 2002 2004 2006 2008
Ch|0r0phy” in SeaWIFS da-ta! we flt the regreSS|0n mOdel pre' Southern Ocean Pacific Oligotrophic South Pacific Arabian Sea
sented in EqQ. (1) to deseasonalized monthly mean SeaWiF * .
observations for 1998-2007, globally and in the 14 biomes3 MMW : SMN A F"A A
presented in Fig. 1. We also estimate the first-order auto-” - -2 -2
correlation and standard deviation (EC]S. 2_3) in the ocear 98 2000 2002 2004 2006 2008 1998 2000 2002 2004 2006 2008 1998 2000 2002 2004 2006 2008

. . B f B | Southern O Ind Oligotrophic Ind
chlorophyll concentration from the deseasonalized monthly ke e e
. . . 4] 4]

mean SeaWiFS observations. We estimate the trends pres > 2 > 2
dicted by the three ocean biogeochemical models also usina IV I 1 8% E uV'/‘W‘V"lM
the regreSSion model presented in Eq. (1) For all the F€QreS 145200020022004 20062008 169820002002 2004 2006 2008 1095 2000 2002 2004 2006 2008
sion analyses, we verify the underlying assumptions of inde-_ . o .
pendently distributed normal errors with a constant variancd 19- 2. Deseasonalized anomalies in SeaWiFS ocean chloro-
using the Anderson-Darling normality test, the Breusch_phyII concentrations from 1998-2007 averaged globally and in
Pagan homoscedasticity test and the Durbin Watson inde14 biomes. Since the magnitude and variability varies among the

Il th istical ‘ . different regions, the chlorophyll concentrations are standardized
pendence test. All the statistical tests are performed using he mean is subtracted from the time series and then the time series

(R Development Core team, 2008) and using a 5 % signifi-is givided by its standard deviation) to display on the same scale.

cance level. The dotted lines represent the trends. The two panels with a star
We compute:* for discontinuities at different points in the represent the trends that are significantly different from zero.

time series. The range of expected magnitudes in trends is es-

timated from the annual global and regional means of ocean

chlorophyll for the 20012100 period in the three model runs i iged by its standard deviation) deseasonalized SeaWiFS
described in the data and models section. Furthermore, Wep|orophyll concentration monthly means for all the regions.

compute the number of years necessary to detect a trend fqfe present the standardized chlorophyll concentration to dis-
no discontinuity and the mulu-model mean treqd_for differ- play all regions on the same scale since they have different
ent values of autocorrelation and standard deviation to Sho"Yanges of concentrations. For the two biomes with significant
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their effects on trend detection. trends (high-latitude North Atlantic and Southern Ocean Pa-
cific), the fits are also presented. The deseasonalized SeaW-

3 Results iFS chlorophyll concentration monthly anomalies (not stan-
dardized) for all the regions are presented in the Appendix A.

3.1 Trends in satellite data and in ocean models Table 2 presents the GLS trend estimates of global and

biome-specific annual chlorophyll concentration in the three
Table 1 presents the GLS trends for 1998-2007 in SeaWmodel projections for the period 2001-2100 (Fig. 3). We use
iFS satellite chlorophyll concentration for the global mean output from three different models to give an estimate of the
and average in 14 biomes. Globally and in most biomesmean and range of possible future trends in surface chloro-
trends are not significant with the exception of the high- phyll concentration. Globally, IPSL-PISCES shows a strong
latitude North Atlantic 1.3 % per year) and the Southern and significant decreasing global trend. GFDL-TOPAZ also
Ocean Pacific (0.65% per year). In all cases, the Durbin-has a significantly decreasing global trend, but its magnitude
Watson test for the independence of the residual noise is sigs weaker than IPSL-PISCES. The global trend in NCAR-
nificant, showing the necessity to take into account the auCCSM3 is not significant. In many biogeochemical models,
tocorrelation in the analysis through GLS. Additional evi- the global trend reflects a balance between decreasing trends
dence for the presence of red noise is also presented in the some regions and increases in other regions. Thus, we
Appendix A. Figure 2 presents the standardized (the meamlso analyze the biomes trends that may give a clearer signal
is subtracted from the time series and then the time series ithan the global mean. In the high-latitude North Atlantic, the

www.biogeosciences.net/10/2711/2013/ Biogeosciences, 10, 27212013
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Table 1. Generalized least square trends, variability and autocorrelation of the SeaWiFS monthly ocean chlorophyll data. The trends
(w), noise standard deviatiowf) and autocorrelationg) are computed for the global mean and for the mean of each biome from
January 1998-December 2007. For each region, we test whether the trends are significantly different from zero at the 5% significance
level.

Region Chlorophyll concentration linear trends

wa ¢b O'C
mgm3yr1x10% mgm3yr1 x 10—1%
(% per year)

Global mean 4.9 (0.11) 0.52 1.26
High-latitude North Atlantic —55.5 (-1.31)f 0.16 3.86
Equatorial Atlantic 5.2 (—0.18ff 0.61 5.20
Oligotrophic North Atlantic —~12.7 0.95f 0.59 2.02
Southern Ocean Atlantic 7.8 (0.56} 0.39 231
Oligotrophic South Atlantic —2.8 (-0.29% f 0.52 0.66
High-latitude North Pacific =~ —13.8 (-0.34f: & f 0.37 3.83
Equatorial Pacific 5.4 (0.36)f 0.87 251
Oligotrophic North Pacific -3.0 (—0.34)’3'f 0.84 0.60
Southern Ocean Pacific 10.8 (0.58) f 0.47 1.03
Oligotrophic South Pacific 2.0 (0.33f 0.80 0.45
Arabian Sea 25.7 (1.45) 0.73 2.69
Bay of Bengal —7.6 (~0.50) 0.59 151
Southern Ocean Indian —4.4 (—0.21f 0.59 1.03
Oligotrophic Indian —2.9(-0.32f & f 0.80 0.62

2 Linear trend as expressed in Eq. (1). The trends are computed using monthly data, but expressed yearly to
be consistent with the trends computed using the models that are presented in Table 2.

* The trend is significantly different from zero, 5% significance level.

b First-order autocorrelation of the noise estimated as presented in Eq. (2).

¢ Standard deviation of the noise as presented in Eq. (3).

d Normality hypothesis rejected, Anderson—Darling normality test, 5 % significance level.

€ Homoskedasticity hypothesis rejected, Breusch—Pagan test, 5 % significance level.

f Independence hypothesis rejected, Durbin—Watson test, 5% significance level.

IPSL-PISCES and NCAR-CCSM3 models project decreas-estimated from output of the three biogeochemical models.
ing trends, while the GFDL-TOPAZ model projects an in- It can be seen that* increases with the fraction of data be-
creasing trend. In the Southern Ocean Pacific, the trends prdere the discontinuity. A discontinuity that occurs halfway
jected by the GFDL-TOPAZ and NCAR-CCSM3 models are in the time series (same number of observations before and
increasing. The IPSL-PISCES model projects a decreasingfter) has the most negative impact on trend detection (the re-
trend for the Southern Ocean Pacific. Whether the trends desults are symmetric above and belew 0.5). Furthermore,
tected in the high-latitude North Atlantic and in the Southerntrends of a small magnitude also need more observations to
Ocean Pacific in the SeaWiFS data might represent climatée detectable.
change or decadal variability cannot be answered without a Approximately 27 yr of continuous observations would be
detection and attribution study. Answering this question isneeded to identify a trend in globally averaged chlorophyll
even more challenging since the models often do not agreeoncentration given the trend magnitude projected by the
on the sign of the projected trends. Other regions where thenulti-model mean£1.53x 10~*mg m3yr—1) of the three
three biogeochemical models do not all agree on the sign obiogeochemical models. This estimate is lower than the 39 yr
the trend are Oligotrophic South Atlantic, Equatorial Pacific, estimate of Henson et al. (2010), because the latest SeaW-
Oligotrophic South Pacific and the Southern Ocean Indian. iFS reprocessed version (R2010.0) used here has less vari-
ability than the version 5.2 used in the Henson et al. (2010)
3.2 Discontinuity and red noise effects on trend study. If a discontinuity occurs halfway through the time se-
detection ries, we estimate this would increasefrom 27 to 43 yr. If

the “real” global trend in the chlorophyll concentration were

Figure 4a presents the number of years of observation necegpest represented by the IPSL-PISCES trend, then it would
sary to detect a global trend in satellite data for different trendig e approximately 13 yr of observations without discontinu-

magnitudes and different timing of a discontinuity. The rangeity On the other hand, if the “real” trend in the chlorophyll
of the trend magnitude was set according to the global trend

Biogeosciences, 10, 2712424 2013 www.biogeosciences.net/10/2711/2013/
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Table 2. Ocean chlorophyll generalized least square trends for 2001-2100 estimated from the model outputs.

Region Chlorophyll concentration linear trends
mgm3y~1x 10-4 (% per year)

IPSL-PISCES GFDL-TOPAZ NCAR-CCSM3

Global mean —4.4 (—0.21)f —0.4 (~0.02) 0.2 (0.01)
High-latitude North Atlantic  —23.8 (-0.71)~ 0.1 (0.0059 "  —3.9(0.15}f
Equatorial Atlantic —05(0.16 " —14(011p&"  —260.15)"
Oligotrophic North Atlantic —1.3(~0.24yd —1.6 (-0.13F —1.5(-0.10)-&f
Southern Ocean Atlantic 2.6 (0.09) 1.6 (0.07%f 2.9 (0.09%
Oligotrophic South Atlantic —1.2 (-0.24)¢ 0.9 (0.07¥ —0.4 (—0.03)~f
High-latitude North Pacific —4.3 (-0.10y+4f  —3.1 (~0.10)f —1.4 (—0.06)*
Equatorial Pacific —4.2(—0.39)~d 1.4 (0.06f  —0.6 (—0.04)-d
Oligotrophic North Pacific —1.2 (—0.20}" —2.2(-0.23)-¢ —0.8 (-0.05)~f
Southern Ocean Pacific —-3.9 (—0.16)~f 1.1 (0.06}-© 1.2 (0.05¥
Oligotrophic South Pacific ~ —1.3 (—0.23)&:f 0.2 (0.025F  —0.3 (-0.02)4f
Arabian Sea —0.2(=0.07)~d —2.9(0.29&F  _2.4(0.16)"
Bay of Bengal ~05(-0.134€  _19(-0.15r®  —1.0(-0.06)"f
Southern Ocean Indian —0.5(0.02) 0.9 (0.04)-¢ 1.5 (0.07¥
Oligotrophic Indian ~130.22F  —1.1(0.14y° —0.7 (0.05%:f

* The trend is significantly different from zero, 5 % significance level.

d Normality hypothesis rejected, Anderson—Darling normality test, 5% significance level.
€ Homoskedasticity hypothesis rejected, Breusch—Pagan test, 5 % significance level.

f Independence hypothesis rejected, Durbin—-Watson test, 5 % significance level.

concentration is closer to the GFDL-TOPAZ trend, then it variance of the red noise) and weaker and stronger trend pro-
would take much longer to detect (from 66 yr of continu- jections. In the Equatorial Atlantic, which has relatively large
ous observations to 105 observations with a discontinuityvariability, detecting a trend with the same magnitude as the
halfway through the time series). The NCAR-CCSM3 trend biome multi-model mean trend would require approximately
is not significantly different from zero, thus the estimation of 54 yr of continuous observations and up to more than 90 yr of
the number of years of observations is not applicable here. observations in presence of a discontinuity. In the Equatorial

Figure 4b presents the effect of the first-order autocorrePacific, even though the projected multi-model mean trend is
lation and standard deviation on the ability to detect trendssmaller than in the Equatorial Atlantic, we would still require
of the same magnitude as the multi-model mean trend. Onéewer years of observations to detect the trend (between 45
can see that strong, positive first-order autocorrelation andontinuous years and up to 75yr in presence of a discontinu-
high standard deviation seriously inhibit the ability to detect ity) since the variability is smaller in this biome. In the high-
trends. For example, in monthly observations with a standardatitude North Pacific, which has large variability, we would
deviation of 0.02 mgm® and a first-order autocorrelation of require approximately between 37 yr (continuous) to 58 yr
0 (each month independent from the others), it would take ap{discontinuity halfway) of observations to detect the multi-
proximately 25 yr of observations to detect a trend (withoutmodel mean trend. In the Oligotrophic North Pacific, which
discontinuity) with the same magnitude as the multi-modelhas very small variability and a relatively small projected de-
mean trend{1.53x 10~*mgm3yr~1). In the presence of cline, the multi-model mean trend should be detectable with
large monthly first-order autocorrelation (0.9), it would take approximately 29yr of observations (or as much as 45yr
approximately 65 yr of observations to detect the same trendin presence of a discontinuity). The number of observations
Figure 4b also presents the values observed in global monthipecessary to detect a trend in the eight remaining biomes is
chlorophyll by SeaWiFS: a first-order autocorrelation of 0.52 presented in the Appendix A (Fig. A4).
and standard deviation of 0.01 mg# The observed satel-
lite autocorrelation corresponds to a decorrelation time of ap-
proximately 3 months, which is high enough that it must be4 Discussion and conclusion
taken into account in trend analyses (Fig. A2).

Figure 5 presents” in satellite data in six differentbiomes We have shown that ten-year trends in SeaWiFS ocean
for different trend magnitudes and different times of dis- chlorophyll are distinguishable from the observed red noise
continuity. The biomes were chosen to represent larger anéh only two of our fourteen biomes: the high-latitude North
smaller variability (quantified by the autocorrelation and Atlantic and the Southern Ocean Pacific (Fig. 1; Table 1).
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continuous observations necessary to detect a trend (with the mag-
Fig. 3. Annual ocean chlorophyll concentrations projected for nitude of the multi-model mean trend) in satellite ocean chlorophyll

2001-2100 averaged globally and in 14 biomes from three-oceaccording to the autocorrelation and standard deviation in the data.
biogeochemical models forced with the A2 scenario from the Spe-The star in the figure shows the values observed in global SeaWiFS

cial Report on Emission Scenarios (Nakicenovic et al., 2000). Thedata from 1998-2007.
projections are standardized (the mean is subtracted from the time

series and then the time series is divided by its standard deviation)

to display concentrations on the same scale. The trends magnitud&SSary to de_te(_?t atrend Si_gnal. In addition, we showed that
are presented in Table 2. a discontinuity in the satellite data measurements could have

a large negative impact on our ability to understand ocean
productivity’s response to climate change. We estimate ap-
The magnitude and sign of linear trends estimated in terproximately 27 yr of continuous observations are required to
years of monthly SeaWiFS observations are in agreemendletect global trends in surface chlorophyll concentration.
with the trends detected by Vantrepotte anélid (2009) and The above presents an idealized scenario. In reality, the
Siegel et al. (2012), even though the analysis was performedcenario could be that the remaining ocean color sensors,
on biome means in the present study. The high-latitudeMODIS Aqua and Terra, fail during the present year (2012)
North Atlantic and the Southern Ocean Pacific biomes ex-or next year (2013) before a new satellite is launched, and
hibit strong linear trend signals, but a formal detection andVIIRS fails to achieve the necessary data quality. During this
attribution study to distinguish between trends expected fronperiod, no measurements would be taken, cross-calibration
natural variability (e.g. decadal oscillations, natural forcings)would not be possible and calibration would rely exclu-
and climate change would be necessary to assign causalitgively on in situ observations. Assuming that the real trend in
Alternatively, a simple methodology that would facilitate the chlorophyll is best represented by the mean trend of the three
distinction of a long-term trend from a suspected dominantmodels, the trend would be distinguishable from the noise
source of variability, such as the Elidi Southern Oscilla- only after at least 40 yr (in 2037) of observations. This is be-
tion (ENSO) for example, could be applied. Such a methodcause the discontinuity would occur at a time when approx-
might include an ENSO index term in the regression modelimately 43 % (17 yr) of the data were collected (as opposed
(Henson et al., 2010) to account for the variability relatedto 27 yr of continuous observations, if there is no interrup-
to ENSO and thus highlight any residual trend that may betion). In this case, the discontinuity would amount to 13 ad-
attributable to other factors such as climate change. ditional years of observations necessary before a trend could
We discussed the importance of accounting for the redbe detected. This estimation does not include the duration of
noise in trend analyses of ocean productivity using ocearthe gap (e.g. if the gap lasts two years, a trend would not
color satellite data and quantified its effect on the time nec-be detectable until 2039). If the discontinuity occurs during

Biogeosciences, 10, 2712424 2013 www.biogeosciences.net/10/2711/2013/



C. Beaulieu et al.: Factors challenging our ability to detect long-term trends in ocean chlorophyll

107 Equatorial Atlantic 107 Oligotrophic North Atlantic 107 Southern Ocean Atlantic

) IR0 1 )
E 7 S ks
s, s S & 's,
'e £ - e
E g ClE
= S 14 @ 5 2 © o
2 2 2
g 3 g / o1
= LT R SR A N B 5
1.
0 0.2 0.4 0 0.2 0.4
T T T
10" High latitude North Pacific 10 Equatorial Pacific 107 Oligotrophic North Pacific

o N e ]
535 s e %
q T
£ E
2 ° o185 0 40
;2.5 _\E 45
3 2 s .| 50
[ = 60—

1.5] o e

- - -IPSL-PISCES trend
- - GFDL-TOPAZ trend

“““ NCAR-CCSM3 trend
——Model mean trend

Fig. 5. Number of years of observations*() necessary to detect a
trend in satellite monthly ocean chlorophyll in six different biomes
according to the magnitude of the trend and of the fraction of data
before the discontinuityr(). The standard deviation and autocorre-
lation used in the calculations were estimated from SeaWiFS data
from 1998-2007. The range for the trend magnitude was obtained
from three biogeochemical models, and these magnitudes (in abso-
lute value) are shown on the figure as well as the model mean trend
(Table 2). We present the fraction of data before the discontinuity
between 0 and 0.5 only since the results are symmetric. For exam-
ple, the number of years necessary to detect a trend of the same
magnitude will be the same if the discontinuity occurs after 25 % or
75 % of the data were collected.

2018 instead, we would need 43 yr of observations, and the
trend would not be detectable before 2040. In this case, the
discontinuity occurs at a time when approximately 50 % of
the data were collected. Overall, it could take an additional
13-16 yr of observations to detect a trend in satellite ocean
chlorophyll under the idealized scenario if the two MODIS
sensors fail and VIIRS remains of questionable reliability be-
fore OLCI is launched. Of course, this could be reduced if a
cross-calibration was possible with another instrument that
made overlapping measurements for a few years, so that a
consistent, continuous time series was available. Other satel-
lites have been launched or are planned, but if the data is not
available for cross-calibration, the same problem will occur.

Several assumptions were made in this study and our re-
sults are valid only if they are reasonable. These assumptions
include:

1. Following Henson et al. (2010), we made the assump-
tion that the trends in ocean chlorophyll concentration
are linear since the biogeochemical models used pro-
jected trends that are approximately linear over time.
More development would be necessary in order to de-
tect spatio-temporal trends, nonlinear trends or step-like
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Table 3. List of notations.

&1 errors following a white noise process
m intercept in the linear regression model
white noise variance
red noise variance
fraction of data before the discontinuity
first-order autocorrelation
magnitude of the trend
o0 expected magnitude of the trend
2 x 1 vector of regression parameters
number of observations
n*  number of observations necessary to detect a trend
N n x 1 vector of errors following a red noise process
N;  errors following a red noise process
S n x n error-covariance matrix
t time
To  number of observations before the discontinuity
X n x 2 matrix of explanatory variables
y n x 1 vector of observations
vt time series of observations

Q Q
2" N

E@a a%ﬁ

behavior changes or to assess the number of years of ob-
servations required to do so.

2. To assesst*, we used the trends projected by three

ocean biogeochemical models coupled with climate
models. We used several models to represent the un-
certainty associated with the trend magnitude. The dif-
ferent trends in chlorophyll concentration estimated by
each of the three models are due in part to their different
representations of the ecosystem. In particular, changes
in the relative proportions of large (diatoms) versus
small phytoplankton can contribute substantially to the
magnitude of the estimated climate-change driven trend
(Steinacher et al., 2010). Diatoms and other large phy-
toplankton are expected to decline more rapidly in re-
sponse to increasing nutrient limitation than small phy-
toplankton (e.g. Bopp et al., 2005), and so models that
exhibit a more substantial contribution by large phyto-
plankton under current conditions may project larger
climate-driven declines in chlorophyll than those that
exhibit larger contributions by small phytoplankton as
nutrient limitation increases in response to increased
vertical stratification under climate change (Sarmiento
et al., 2004). If real observed trends are greater than or
less than the range predicted by the ocean biogeochemi-
cal modelsp™ may be fewer or more than our estimates,
respectively. For example, the trends could be different
if other coupled climate-ocean biogeochemistry mod-
els were used. Coupled climate-ocean biogeochemistry
models projections from the Coupled Model Intercom-
parison Project Phase 5 database that are or will be made
available should be considered in future work.
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3. Similarly, n*could vary if a different biome definition overlap in operation between satellites and collecting consis-
was used and if we assumed the biomes were also extent in situ observations, so that validation, monitoring sen-
panding as suggested in Polovina et al. (2008, 2011)sor degradation and cross-calibration of instruments is pos-
For example, if we were using a different biome defini- sible (NRC, 2004). In situ measurements have been success-
tion exhibiting smaller internal variability and/or larger fully used to validate and reduce uncertainty in satellite ocean
signal, n* would decrease. For chlorophyll at greater color data (e.g. McClain et al., 2009). Data from careful
depthsp* may also vary, as it cannot be estimated usingcross-calibrations that fully eliminate discontinuities across
satellite data. Gliders and floats provide complementarysatellites should be capable of detecting trends with the same
information about the vertical structure of ocean chloro- confidence as data from a single satellite. Cross-calibration
phyll as well as surface ocean chlorophyll in cloudy methods allowing generation of unbiased time series from
conditions (Boss et al., 2008; Perry et al., 2008). A SeaWiFS-MODIS-VIIRS-OLCI would be crucially useful to
global network of bio floats could provide additional increase our potential for the detection of climate change ef-
opportunity to detect long-term trends in ocean chloro-fects on ocean productivity.
phyll concentration.

4. The results are based on the assumption that the average
seasonal cycle remains the same year after year. ViolaAppendix A
tion of this hypothesis might confuse trend detection.
Some studies have suggested that the seasonal cycle fdditional details on the data and models and additional
chlorophyll concentration may be changing with time results
in some regions (Vantrepotte andehh, 2009; Henson
et al., 2013). However, since we do trend detection onln this appendix, we provide more details about the SeaWiFS
biomes means, the changing seasonal cycle seems to I§tata and the three models projections that were used. Fig-
cancelling out when averaging and it seems reasonablgre Al presents the SeaWiFS ocean chlorophyll concentra-
to assume that the Cyc|e approxima’[e|y repeats itse“tiOl’]S anomalies. The variability is very different between the
year after year. biomes. High-latitude North Atlantic, Equatorial Atlantic,
the Southern Ocean Atlantic and the high-latitude North Pa-
5. The results are also based on the assumption that the reglfic regions exhibit the largest variability, while the olig-
noise estimated by the standard deviation and first-ordenbtrophic regions have very small variability in chlorophyll
autocorrelation from ten years of satellite data observa-concentrations.
tions is representative of long-term internal variability.
We assumed that these statistical properties are station-

Global High latitude North Atlantic Equatorial Atlantic

ary, but the results could vary slightly if these properties - o1  ox
change in time or if it takes longer to estimate internal 5  ohryewimproymb| & OMWAW 5 9
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This work demonstrates the necessity of continuous monifrom 1998-2007 averaged globally and in 14 biomes. The dotted
toring of global ocean chlorophyll. This requires ensuring lines represent the trends.
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In order to present differences in variability of chloro-
Fig. A2. (a) Sample autocorrelation function aifid) sample par-  phyll concentrations anomalies from the three models, we
tial autocorrelation function of the SeaWiFS ocean global chloro- 5i5q present the model projections in all biomes (Fig. A3).
phyll monthly .anomallies from 1998—2007. The dashed !ines presentne variability depends on the biome and model. In general,
the 95 % confidence interval for the partial autocorrelation. The ex-¢ 4 jigatrophic regions also show the smallest variability, in
ponential decgy in the qutocorrelatlon_functlon_anq S|_gn|f|canc_e Ofagreement with the satellite data
only the lag 1 in the partial autocorrelation function indicates a first- . ) .
order autoregressive process (red noise). Figure A4 prese_nts the _number of observations necessary
to detect a trend in the biomes that were not presented in
Fig. 5: high-latitude North Atlantic, oligotrophic South At-
) ) . lantic, Southern Ocean Pacific, oligotrophic South Pacific,
Figure A2 presents the sample autocorrelation functiona apian Sea, Bay of Bengal, Southern Ocean Indian and
and partial autocorrelation function of the SeaWiFS globally oligotrophic Indian.
averaged anomalies in chlorophyll concentration. The auto-
correlation function and partial autocorrelation functions are
commonly used in autoregressive moving average model se-
lection. For an autoregressive model of orggAR(p)), the
theoretical autocorrelation function tails off as an exponential
decay or damped sine wave, and the theoretical partial auto-
correlation function is equal to zero past lag-p (Wei, 1990).
The exponential decay shape of the autocorrelation func-
tion (Fig. A2a) and the partial autocorrelation function drop
after lag-1 (Fig. A2b), indicating that a first-order autocor-
relation model appropriately fits the noise and justifies the
choice of GLS regression to study trends in ocean color
chlorophyll concentration.
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