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Regional surface chlorophyll trends 
and uncertainties in the global 
ocean
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changes in marine primary productivity are key to determine how climate change might impact 
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can inform on expected changes and are used here to constrain observational trend estimates and 
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importance of considering chlorophyll changes at a regional level. We compare these results with 
������������������������������������������ǲ�����ǳ������ǡ��������������������������������������Ǣ�
coupled model priors are shown to slightly reduce trend magnitude and uncertainties in most regions. 
the statistical model used here provides a robust framework for making best use of all available 
information and can be applied to improve understanding of global change.

Primary production (PP) by phytoplankton comprises approximately half of the global total biospheric pro-
duction and is vital to most marine  ecosystems1,2. It is thus important to determine whether phytoplankton 
abundance is changing and, if so, how rapidly. Chlorophyll-a concentration (chl), a proxy for phytoplankton 
abundance, is used in studies of trends as it can be measured regularly from satellites at a global  scale3; it is 
thus listed as an essential climate  variable4. As phytoplankton form the base of the marine food web and are 
mechanistically linked with !shery  yield5 any changes could have a strong e"ect on future marine !sh  stocks6.

Biogeochemical models can be used to project future change, as well as to investigate trends over historical 
periods. Using prescribed atmospheric forcing, a hindcast  simulation7 has shown a PP decrease of 6.5% over 
the period of 1960–2006. Modelling projections to the end of the twenty !rst Century with multiple di"erent 
parameterizations of marine ecosystems have shown global PP decreases of di"erent magnitude: 2–20%8, 8.6%9, 
or 6.5%10, each composed of a combination of both PP increases and decreases, varying regionally.

Ocean color satellite records provide the best observational data source for understanding the long-term 
response of phytoplankton abundance to global climate forcing, due to the data’s large spatial coverage and high 
temporal  resolution11,12. However, the short record length and large natural variability of chl can make trend 
detection  challenging13–16. Phytoplankton trends estimated from longer time-series tend to show less variability 
and are of lower magnitude than trends estimated from shorter time-series17. Many studies have been con-
ducted on widely available satellite data, although no consensus on the presence/sign of a global phytoplankton 
abundance trend has been reached yet. Previous studies over di"erent periods and using one or a combination 
of multiple sensors have reported global trends that were either signi!cantly  positive15,18,19,  negative20,21, or not 
 signi!cant16,22. It has been suggested that a global average of ~ 30 years of data is required to distinguish a climate 
change driven chl trend from background  variability13,23. $is suggested record length is substantially longer 
than the ~ 20 year record available at present, although the global average masks considerable regional variability 
with some regions requiring less time than the average !gure of 30 years.
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In order to assess trends in global ocean color data (September 1997–June 2018), a Bayesian spatio-temporal 
model is used here. In previous work, we demonstrated that this model produces a more accurate !t to chl obser-
vations than statistical models that do not account for spatial relationships within the  data24,25. $is approach 
relies on ‘borrowing strength’, which takes advantage of the fact that trends in chl are likely to be similar at neigh-
bouring grid  points26. Additionally, this approach provides both a full assessment of  uncertainty24 and a frame-
work for incorporating information from other sources through a prior distribution. In previous work, however, 
vague prior distributions have been used to re%ect the lack of information about expected trends’ magnitudes 
and  uncertainties24,25. As a !rst guess towards trends in the ocean color record, model output from the IPCC 
Coupled Model Intercomparison Project (CMIP5) is used here to provide prior information. A combination of 
Historical and RCP8.5 scenarios from the available CMIP5 model runs are used to form the prior distributions. 
We also assess the sensitivity of the CMIP5 priors on the resulting trends and uncertainties.

Results
�������������������������������������������ͻ�������Ǥ� $e hierarchical model with CMIP5 model 
priors shows that there is much regional variability in trend estimates and uncertainties (Fig. 1). Note that the 
uncertainties here are de!ned based on the width of the 95% Highest Density Interval (HDI). Several regions 
reveal a negative trend, namely the Indian Ocean (average of − 0.60 ± 0.14%  year−1) and the majority of the 
Equatorial and North Paci!c (average of − 0.91 ± 0.13% year−1). $e Atlantic mostly contains regions with posi-
tive trends, except the Eastern Tropical Atlantic Province (Region 1) and the North Atlantic Subtropical Gyral 
Province (West) (Region 15), which show negative trends (of − 0.35 ± 0.19% year−1 and − 0.41 ± 0.19% year−1, 
respectively) and the Gulf Stream Province (Region 11) whose trend is not statistically di"erent from zero 
(0.02 ± 0.21% year−1). High latitudes typically display positive trends except in the Northern Paci!c Ocean, where 
the outlook is mixed, speci!cally the Paci!c Subarctic Gyres Province (East) (Region 18) trend is not statistically 
di"erent from zero (− 0.03% ± 0.24 year−1) and the trend in the Paci!c Subarctic Gyres Province (West) (Region 
19) is negative (− 0.35 ± 0.18% year−1). In general, regions where trends are not yet detectable correspond to large 

Figure 1.  (a) $e trend estimates and (b) their uncertainties (width of 95% HDI) for the space–time model 
with CMIP5 priors in each region. White regions indicate that the trend is not statistically di"erent from 
zero. Trends are typically more positive at mid to high latitude. $e uncertainty follows a di"erent pattern, 
appearing to be partially dependent on ocean region; it is high in the North Atlantic and low in the Southern 
Ocean. Provinces are: (1) Eastern Tropical Atlantic Province, (2) Indian Monsoon Gyres Province, (3) Indian 
South Subtropical Gyre Province, (4) North Atlantic Tropical Gyral Province, (5) North Paci!c Equatorial 
Countercurrent Province, (6) North Paci!c Tropical Gyre Province, (7) Paci!c Equatorial Divergence Province, 
(8) South Atlantic Gyral Province, (9) West Paci!c Warm Pool Province, (10) Western Tropical Atlantic 
Province, (11) Gulf Stream Province, (12) Kuroshio Current Province, (13) North Atlantic Dri' Province, 
(14) North Atlantic Subtropical Gyral Province (East), (15) North Atlantic Subtropical Gyral Province (West), 
(16) North Paci!c Polar Front Province, (17) North Paci!c Subtropical Gyre Province (West), (18) Paci!c 
Subarctic Gyres Province (East), (19) Paci!c Subarctic Gyres Province (West), (20) South Paci!c Subtropical 
Gyre Province, (21) South Subtropical Convergence Province, (22) Subantarctic Province, and (23) Tasman Sea 
Province. $is map was created by the authors in R v3.4.2 (https ://www.r-proje ct.org/) using the ggplot2 v2.2.1 
package (https ://ggplo t2.tidyv erse.org/).



͹

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:15273  |  �����ǣȀȀ���Ǥ���ȀͷͶǤͷͶ͹;Ȁ�ͺͷͻͿ;ǦͶ͸ͶǦͽ͸Ͷͽ͹ǦͿ

www.nature.com/scientificreports/

uncertainties, such as the Gulf Stream Province (Region 11) and the Paci!c Subarctic Gyres Province (East) 
(Region 18). Trends are statistically di"erent from zero in 18 of the 23 regions we analyse. At the global scale, 
the statistical model with CMIP5 model priors estimates a weighted average trend of 0.08 ± 0.35% year−1 (i.e. 
suggesting no change). $e weighting is based on the average chl and areal extent (in  km2) of each region. See 
Table S1 for a complete list of estimated trends and uncertainties, both with and without CMIP5 priors.

Sensitivity to the choice of priors.  $e prior information, speci!cally multi-model means and variances 
of trends estimated using the CMIP5 models, is shown in Fig. 2 and Table S2. $e vague priors have no trend 
(magnitude of 0.0% year−1) and a large variance (100) to re%ect the lack of knowledge as to whether trends should 
be positive or negative, whilst the average of the CMIP5 trends ranges from − 1.2 to 1.1% year−1 between regions 
(the mean across all regions is − 0.089% year−1). $e variances of the priors obtained from the CMIP5 models 
are substantially smaller than the vague prior variance (Fig. 2). $e e"ect of the two types of priors is revealed 
by comparing the posterior trends obtained from !tting the space–time model with CMIP5 and vague priors 
(Figs. 3, 4). $e overall trend in the model with CMIP5 priors is 0.08% year−1, while the overall trend in the statis-
tical model with vague priors is 0.094% year−1. Table S2 contains a complete list of prior information. $is trend 
reduction highlights that, by introducing CMIP5 prior information, trends tend to become smaller (in 15 of the 
23 regions). $is reduction in magnitude appears to primarily result from the small variance of the priors (the 
average variance from all regions is 0.21). $e small variance of the CMIP5 prior information, relative to the vague 
prior, alongside the low magnitude trend of most CMIP5 priors creates an inward pressure on the probability 
densities, e"ectively pushing the trends towards zero (Fig. 5). $is is despite the fact that the average prior trend 
magnitude is higher when using the CMIP5 priors (0.04% year−1) than when using the vague priors (0.0% year−1). 
$e introduction of CMIP5 priors leads to a reduction in trend uncertainty in 15 of the 23 regions (i.e. 65% of 
regions) (Figs. 3, 4). However there are a few regions where signi!cant increases in uncertainty are seen, typically 
when CMIP5 trends and observed trends are con%icting, such as in the eastern North Paci!c and North Atlantic. 
However, all these di"erences are small, and the trend estimates with and without CMIP5 prior information are 
not deemed statistically di"erent in any region (i.e. their 95% HDIs overlap)—see “Methodology”.

A sensitivity test was performed in order to further analyze the e"ect of incorporating priors, by !tting models 
with a range of prior mean and variance values (Tables S3 and S4). Due to computational needs to !t the model, 
we assess sensitivity for the Tasman Sea Province region (Region 23) only. $is example shows that a prior vari-
ance of greater than 0.1 has limited e"ect on trend estimates and essentially no e"ect on trend uncertainties. 
Priors with smaller variances have more e"ect on the trend estimates, reaching a maximum in this sensitivity 
test when prior variances are 0.001. $e CMIP5 priors provide a variance ranging from 0.046 to 4.1, which is still 
larger than the area of maximum e"ect identi!ed above as < 0.001. $is result may explain why the sensitivity 

Figure 2.  Summary of the CMIP5 prior information: inter-model trend mean and variance from trends !tted 
on regional time series from each model and ensemble. Trends are estimated from regional average time series 
for each of the CMIP5 models and ensembles. $e red circle indicates the vague prior used, while the blue 
diamonds indicate the CMIP5 priors for each region. Note that variance is plotted on a logarithmic scale due 
to the several orders of magnitude di"erence between the vague priors and the CMIP5 priors. A map of the 
provinces is provided in Fig. 1 and a list of region names is provided in the caption.
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Figure 3.  Posterior probability density of the trends for the statistical models with CMIP5 priors and with 
vague priors. $e vertical bars in each probability density mark the upper and lower bounds of the 95% HDI. 
While the CMIP5 priors may constrain trend estimates and uncertainties in several regions, the trend estimates 
are not statistically di"erent between using CMIP5 priors and using vague priors (95% HDI). A map of the 
provinces is provided in Fig. 1 and a list of region names is provided in its caption. $e statistical model with 
CMIP5 model priors yields a global weighted average trend of 0.08%  year−1.

Figure 4.  $e di"erence in (a) estimated trends and (b) their uncertainties, when comparing the models !tted 
with the CMIP5 priors in each region as opposed to the vague prior. A negative di"erence indicates that the 
trend and uncertainty are smaller in the model !tted with the CMIP5 priors. A list of region names is provided 
in the caption of Fig. 1. $is map was created by the authors in R v3.4.2 (https ://www.r-proje ct.org/) using the 
ggplot2 v2.2.1 package (https ://ggplo t2.tidyv erse.org/).



ͻ

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:15273  |  �����ǣȀȀ���Ǥ���ȀͷͶǤͷͶ͹;Ȁ�ͺͷͻͿ;ǦͶ͸ͶǦͽ͸Ͷͽ͹ǦͿ

www.nature.com/scientificreports/

to the choice of priors is generally not that strong. However, it must be noted that there is a degree of variability 
in these estimates caused by using fewer Markov Chain Monte Carlo (MCMC) iterations in the Bayesian model 
in this test (10,000 vs 80,000 in the main analysis). A portion of the di"erences seen in the main analysis may 
also result from di"erences between the MCMC chains. Greater consistency between the CMIP5 model trend 
estimates would be required for them to have greater in%uence on chl trend estimates as Bayesian priors.

Discussion
Updated trends in global ocean color data, and their associated uncertainties, are produced using a remotely 
sensed chl dataset of over 20 years length (covering the period 1997–2018) and a Bayesian spatio-temporal 
model. For the !rst time, prior information is provided by chl trends in CMIP5 model output covering the period 
1997–2039. A global average weighted trend of 0.08 ± 0.35% year−1 is found. $is global trend is part of a global 
pattern of stronger regional trends (± 1.8% year−1) that tend to be positive at higher latitudes and are found to 
be statistically di"erent from zero in 18 of the 23 regions analysed.

Global and regional trends estimated here are on average more positive than a number of previous studies, 
including a 2.8 × 10–4 mgm−3 year−1 trend using SeaWiFS and MERIS data over the period 1998–201115, as well 
as a − 0.02%  year−1 trend using version 2.0 of the ESA OC-CCI dataset covering Sep 1997–Dec  201324. A recent 
study using SeaWiFS and MODIS data over the period 1998–201522 reported no globally signi!cant trend, albeit 
within a considerably di"erent statistical framework. Discontinuities within the satellite record are not directly 
considered here although they may impact trend estimates and their  uncertainties25. Given the large regional 
trends of con%icting magnitude and direction, that ultimately lead to a negligible global trend, future studies of 
chl may wish to focus on the drivers behind regional trends.

For the trends estimated here we provide some explanation of their potential driving factors. Increasing trends 
in the Southern Ocean may be related to community shi's towards diatoms, a response to increased wind stress 
and thus mixing; diatoms are typically subject to reduced grazing pressure due to their  size7,22. A similar increase 
in the North Atlantic may be explained the same  way7. Decreases seen in the tropical ocean outside the Atlantic 
are likely explained by the traditional view of increased strati!cation leading to increased nutrient limitation and 
thus decreasing phytoplankton  biomass12,20,27. It is possible the tropical Atlantic is not undergoing the expected 
decrease due to a corresponding change in phytoplankton community composition, caused by this increased 
nutrient limitation. Additionally, internal chl compositions may also be changing in these  regions28–30, possibly 
modifying the interpretation. Additional modelling studies, which would ideally also include optical param-
eterisations, over the same period as the remote sensing record may help further explain some of these trends.

On a regional scale it is interesting to note that the Indian Ocean is estimated to have negative trends in a 
number of observational studies, although not always over the whole  region12,15,19,21,24,31. However, it has been 
 estimated13,23 that a 40 year continuous record is required to unambiguously distinguish a trend signal from 
environmental variability here, making it one of the regions requiring the longest record. $ere is also consist-
ency in the sign of estimated trends in northern hemisphere western subtropical  gyres12,21,22,24,31, even though 
these too have been  estimated13 to require a longer record (37–39 years) in order for a trend to be distinguished 
from environmental variability.

In other regions of the globe there is typically disagreement in our estimated trends compared to other stud-
ies. $is disagreement can be explained by both the di"erent statistical approach and the longer record length 
used in the present study (i.e. more than 20 years). A similar  methodology24 was used with the ESA OC-CCI 
v2.0 dataset, which is ~ 5 years shorter than the ESA OC-CCI v3.1 dataset used here, does not include the Vis-
ible Infrared Imaging Radiometer Suite (VIIRS) sensor, and has uncorrected decay in MODIS  data32. $e ESA 

Figure 5.  Example of the e"ect of priors from the North Paci!c Tropical Gyre Province (Region 6), the region 
with the greatest change in trend estimate magnitude. $e posterior distribution with CMIP5 priors (orange) is 
seen to have moved towards zero (and the mode of the CMIP5 prior distribution—black), when compared to 
the posterior distribution with vague priors (blue). Note that the vague priors are not shown as the distribution 
is %at over this range. Figure S3 (supporting information) shows distributions from all regions.
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OC-CCI v3.1 dataset also contains two large El Niño events in both 1997/1998 and 2015/2016; the ESA OC-CCI 
v2.0 dataset only contains the former. Events such as El Niño can have signi!cant e"ects on trend estimates, and 
thus it is important to have as long a record length as possible, so as to minimize their e"ect on trend  estimates33. 
To assess the e"ect of record length we have included a comparison of trends detected over the periods of Sep-
tember 1997–December 2016 and September 1997–December 2013 with the longest period used here ending 
in December 2018 with the same methodology (see Text S2 and Figure S2 in supporting information). Trends 
detected over 1997–2016 and 1997–2018 are similar in sign and magnitudes in most regions, while there are 
discrepancies with the 1997–2013 trends (Figure S2). $e consistency in the sign and magnitude of estimated 
trends between the two longest observational records suggest trends may be becoming robust with reduced 
in%uence from natural variability in some regions. It should be noted that other studies have found that trends 
in remotely sensed re%ectance emerge from natural variability earlier than chl trends, and thus could be a focus 
for future studies using spatio-temporal statistics for trend  detection30.

We have used CMIP5 models to form prior distributions for chl trends to re%ect independent knowledge 
from observations. CMIP5 trends are found to be typically of lower magnitude than the observational trends. 
$is di"erence may result from either the longer time-series used for the CMIP5 trends, allowing interannual 
variability to be more successfully isolated when estimating trends, or CMIP5 models underestimating trends. 
However, the models produce a relatively wide range of trend estimates, meaning that these priors re%ect large 
di"erences between models. Weighting or other selection approaches could be used to reduce the inter-model 
uncertainty, which could potentially allow for better constraints on trend estimates in the statistical model.

Another potential route for increasing the impact of priors, may be by using further information from the 
CMIP5 models, currently only trend estimate information is used as a prior. However, as this forms only one of 
the number of priors used by the model, this will e"ectively limit the degree of constraint on the model. Instead 
additional prior information (e.g. the intercept, seasonality magnitude, and potentially other hyperparameters) 
from CMIP5 models could be used. However, care should be taken to ensure that these priors are realistic so as 
not to produce an increased uncertainty of trend estimates by their inclusion.

$e Bayesian spatio-temporal model provides a promising and robust framework for studies of climate change 
driven trends in space–time datasets with limited coverage by ‘borrowing strength’. Furthermore, multiple sources 
of information (e.g. models and observations) can be used to improve estimates of climate change driven trends 
and constrain their uncertainties which is essential for policy making decisions supporting marine ecosystems 
and !sheries. Additional improvements of our updated estimates could be made by incorporating in situ data 
(where available) in the hierarchical model or as Bayesian priors to further reduce their variance.

Methods
Data.  $e chl data are sourced from the ESA OC-CCI v3.1  product34 (available at: https ://www.esa-ocean 
colou r-cci.org/). $is dataset combines the SeaWiFS, MERIS, MODIS, and VIIRS sensors using band-shi'ing 
and bias-correction techniques to create a monthly time-series from September 1997 to June 2018 inclusive. 
$e importance of the length of time period, and its e"ect on trend estimates, is discussed fully in Supporting 
Information Text S2. $e data is downscaled to a 1° grid by averaging within 1° boxes. Supporting Figure S5 and 
Table S5 compare results between this approach and an equivalent approach using an equal area 100 km grid, 
but only minimal di"erences are found.

Model data comes from CMIP5 models (sourced from https ://esgf-node.llnl.gov/proje cts/cmip5 /), see Table 1 
for a full list of models used. Models and ensembles with available monthly chl output, run under the RCP8.5 
and historical scenarios, were used. RCP8.5 and historical outputs are joined, omitting data outside the period 
of interest, to create a continuous dataset covering September 1997–April 2039 (i.e. twice the current length of 
the observational period) and starting at the point when SeaWiFS became operational. $is selection provides a 

Table 1.  Models used, their marine biogeochemical component, associated references, and number of 
ensemble runs.

Model names Bioegeochemical model References Number of ensembles
CMCC-CESM PELAGOS 36 1
CNRM-CM5 PISCES 37,38 1
GFDL ESM2G TOPAZ2 39 1
GFDL ESM2M TOPAZ2 39 1
GISS E2 H CC NOBM 40 1
GISS E2 R CC NOBM 40 1
HadGEM2 CC Diat-HadOCC 41 3
HadGEM2 ES Diat-HadOCC 41 4
IPSL CM5A LR PISCES 37,38 4
IPSL CM5A MR PISCES 37,38 1
IPSL CM5B LR PISCES 37,38 1
MPI ESM LR HAMOCC5.2 42 3
MPI ESM MR HAMOCC5.2 42 1
MRI ESM1 MRI.COM3 43 1



ͽ

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:15273  |  �����ǣȀȀ���Ǥ���ȀͷͶǤͷͶ͹;Ȁ�ͺͷͻͿ;ǦͶ͸ͶǦͽ͸Ͷͽ͹ǦͿ

www.nature.com/scientificreports/

record length of ~ 42 years, su)cient in most areas of the globe for climate change driven chl trends to become 
distinguishable from background interannual  variability13. A comparison of the use of di"erent time periods to 
determine the priors can be found in the supplementary information (Text S1 and Figure S1). A (natural) log-
transformation of the chl data is used, for both observational and model  output35. While trends are estimated 
as log di"erences per month, the reported trends have been converted so that percentage changes should be 
considered as percentage changes in un-transformed chl.

Trends in 23 open ocean regions are analyzed, with boundaries de!ned as by  Longhurst44,45. $e province 
approach was chosen as these regions are de!ned by characteristic physical forcing and biogeochemical factors, 
so as to produce regions with as similar trends as possible. $is division is necessary as the model formulation 
necessitates producing one estimate in each region, see model formulation below. Coastal and polar waters were 
omitted due to issues with data availability and quality.

Model formulation.  In each of the 23 Longhurst regions selected for study a hierarchical Bayesian spatio-
temporal model is !tted. Equation (1) represents the !rst level or data level, where the relationship between the 
observed chl Zn,t , at location n = 1, 2, . . . ,N (where N is the total number of 1° grid cells in each region and 
ranges between 116 and 3,785) and at month t = 1, 2, . . . , 250 , and its true value On,t and random measurement 
error εn,t is stated:

$e true value is represented by the following assumed regression model:

where xn,t represents the covariates and intercept, β represents the regression coe)cients (detailed below), and 
the term a′

nwm,t represents spatial and temporal correlation. $e spatial correlation, which considers the relation-
ship between points dependent on their distance in km, is represented by an exponential decay away from site n , 
with spatial correlation becoming completely negligible by approximately 1,500 km25. $e temporal correlation 
is represented by an AR(1) process (i.e. dependent on the preceding month only). $e selected covariates are: 
the time of the observation (to represent the trend) and a seasonality term. $e seasonality term is represented 
sinusoidally as follows:

with amplitude ( βseas ) !tted by the regression model, the period (T) !xed at 12 months (i.e. annually), and phase 
( ϕ ) selected before !tting the regression model so that the peak of the cycle corresponds with the regional aver-
age month of peak chl during the year.

Underlying these equations are the prior distributions which can be used to represent existing understanding, 
or le' vague to represent no clear previous understanding (i.e. a vague prior). $e prior distribution used here 
for the trend is represented by a normal distribution with a speci!ed mean and variance. For the vague prior, a 
mean trend of 0% year−1 and a large variance (100) are used. $e prior based on CMIP5 model output combines 
RCP8.5 and historical scenarios over 1997–2039 to completely cover the observational period and allow a suf-
!ciently long record to distinguish trends from interannual variability. To form the CMIP5 priors, a generalized 
least squares linear regression model with temporal correlation assuming an AR(1) process and no spatial cor-
relation is !tted to the average time series in each Longhurst region for each CMIP5 model and ensemble. Spatial 
correlation terms were omitted, for the model trend estimates only, due to the high computational cost resulting 
from the longer time-series and number of models. Omitting these terms is expected to result in a loss of useful 
information, although the longer time-series should compensate for this. Individual ensembles are averaged 
per model, to avoid adding additional weight to individual models, before a multi-model mean and variance is 
calculated to provide information for a prior. A complete list of prior trend estimates is provided in Table S2.

$is study is focused on the regression coe)cient for the trend from the above Bayesian statistical model, 
which we estimate as the mode of the posterior distribution. $e uncertainty of the trend parameter is repre-
sented by the 95% credible interval which is de!ned as the 95%  HDI46. To assess the e"ect of introducing the 
CMIP5 prior information, results for the statistical model with the CMIP5 priors are compared to results from 
a statistical model with vague priors. To evaluate whether trends are likely to be di"erent in the two scenarios 
their 95% credible intervals are compared to determine if there is an overlap.

$e model !t was estimated in R using the spTimer  package46 using 80,000 MCMC iterations following 
burn-in to allow for good MCMC convergence. Full details on the package and model setup can be found in 
previous  works24,47.
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