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ABSTRACT

This study investigates the possibility of changes in daily scale solar radiation and precipitation variability.
Coefficients of variation (CVs) were computed for the daily downward surface solar radiation product from
the International Satellite Cloud Climatology Project and the daily precipitation product from the Global
Precipitation Climatology Project. Regression analysis was used to identify trends in CVs. Statistically sig-
nificant changes in solar radiation variability were found for 35% of the globe, and particularly large increases
were found for tropical Africa and the Maritime Continent. These increases in solar radiation variability were
correlated with increases in precipitation variability and increases in deep convective cloud amount. The
changes in high-frequency climate variability identified here have consequences for any process depending
nonlinearly on climate, including solar energy production and terrestrial ecosystem photosynthesis. To assess
these consequences, additional work is needed to understand how high-frequency climate variability will

change in the coming decades.

1. Introduction

Strategies for adaptation to climate change hinge on
the expected changes in the distribution functions of
climate variables. Contemporary climate studies have
overwhelmingly focused on two properties of the distri-
bution functions: the mean and the tails (i.e., extreme
events) (Trenberth et al. 2007). While these statistics
are clearly important, other statistics are also relevant
to humans, ecosystem structure and functioning, and
physical and chemical processes. In general, any process
that depends nonlinearly on a climate variable will be
sensitive to the variance of that climate variable. To il-
lustrate the range of processes satisfying this require-
ment, note that photosynthesis (Sinclair et al. 1976),
terrestrial ecosystems (Medvigy et al. 2010), and prop-
erties of solar cells (Gupta et al. 2002; Rahman et al.
2007; Boettcher et al. 2010) all depend nonlinearly on
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downward solar radiation at the earth’s surface (‘“‘solar
radiation”), and that runoff and soil moisture (Marani
et al. 1997; Margulis and Entekhabi 2001), mosquito
populations (Koenraadt and Harrington 2008), and mi-
crobial respiration (Lee et al. 2004) all depend non-
linearly on precipitation. Thus, we expect changes in
climate variances to impact energy production, seques-
tration of carbon by the terrestrial biosphere, and dis-
ease outbreaks.

Previous studies have typically considered changes in
surface climate variances only in the context of extreme
events (e.g., Wettstein and Mearns 2002; Goswami et al.
2006). One exception is Vinnikov et al. (2002), who in-
vestigated changes in temperature variance at local me-
teorological stations. However, changes in variances and
changes in extremes are likely to have distinct impacts.
Taking the example of carbon budgets, high-frequency
variability of precipitation affects photosynthesis (Medvigy
et al. 2010) and respiration (Lee et al. 2004) in ways that are
totally different from the impacts of low-frequency extreme
storms (Dupigny-Giroux et al. 2003) or droughts. The po-
tential consequences of changes in high-frequency vari-
ability in the twenty-first century may be large, potentially
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impacting some terrestrial ecosystems as strongly as an-
ticipated changes in mean climate (Medvigy et al. 2010).
To our knowledge, there have been no global-scale studies
of historical changes in variances of surface climate vari-
ables. In this work, we seek to address this knowledge gap
by using satellite datasets to obtain the high-frequency,
long-term measurements of climate variables needed
for global analysis. We focus on solar radiation and
precipitation.

We describe the relevant datasets in section 2 and our
analysis methods in section 3. In section 4, we first present
a case study that illustrates our analysis and then identi-
fy locations that have experienced statistically significant
changes in solar radiation and precipitation variability,
and where these changes are related to changes in cloud-
iness. We present our conclusions in section 5.

2. Datasets

Our analysis used 24 yr (1984-2007) of International
Satellite Cloud Climatology Project (ISCCP) radiative
flux (FD) and cloud products available on a 280-km
equal-area grid (Zhang et al. 2004). The FD estimates of
the downward surface flux of total solar radiation were
derived using ISCCP clouds and other meteorological
data in conjunction with radiative transfer code
(Zhang et al. 2004, 2007). The solar radiation estimates,
obtained eight times daily, have been used to construct
time-averaged solar radiation values over 3-hourly in-
tervals that account for variation in solar zenith angle
(Zhang et al. 1995). Daily averages are obtained by
averaging the 3-hourly values for each day. This ap-
proach is designed to yield accurate values of daily-av-
eraged solar radiation and has been evaluated in
previous work (Zhang et al. 1995). Other solar radiation
datasets that span similar time periods exist, but they
incorporate the same ISCCP cloud data (e.g., Gupta
et al. 2000).

Previous studies have carefully quantified uncertain-
ties in ISCCP solar radiation estimates (Whitlock et al.
1995; Zhang et al. 1995, 2004, 2007, 2010). A substantial
portion of the uncertainty arises from errors in the input
data, including aerosol information, cloud properties,
and atmospheric conditions, rather than errors in the
radiative transfer model (Zhang et al. 2004, 2010). In
clear-sky cases, much of the mismatch between surface
observations and ISCCP FD solar radiation can be at-
tributed to mismatches in aerosol optical depths (Zhang
et al. 2010). Uncertainties in daily mean solar radiation
can also arise from nonuniform sampling (the number
of daytime samples varies with season and latitude, and
the samples were collected with some variation in their
temporal separation). Furthermore, for any 3-hourly
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period, about 15% of the globe has missing data. Zhang
et al. (1995) tested several filling methodologies and
found that filling physical properties using a nearby
value in time at the same location (as done in the ISCCP
dataset) produced lower rms errors than direct filling
of fluxes in the calculated solar radiation. Further eval-
uation of uncertainties in solar radiation arising from
sampling and from the filling of missing data can be
found in Zhang et al. (1995, 2004, 2010). Efforts to en-
sure constant and common calibration among ISCCP
satellites have also been described (Rossow and Schiffer
1991; Desormeaux et al. 1993; Brest et al. 1997).

Our ability to accurately detect significant trends in
solar radiation variability may be compromised if the
sources of error exhibit strong heteroscedasticity (i.e.,
time-varying error variances), in which case trends in the
error can potentially be mistaken for trends in vari-
ability. There are several regions of particular concern.
One is the Indian Ocean sector, which lacked good
geostationary satellite coverage until ~1998. We have
therefore omitted this region from our 1984-2007 anal-
yses. We are also cautious about the latitude band near
60°N/S because this is approximately the transition re-
gion between geostationary and polar-orbiting satellites.
Finally, Evan et al. (2007) argued that changes in satel-
lite viewing geometry can give the appearance of a trend
in ISCCP cloud amount where a trend does not neces-
sarily exist. However, this effect was limited to relatively
few regions of the world, including the central Pacific,
western Atlantic, and tropical Indian Oceans. In par-
ticular, little tropical land was biased by this effect.

Values of daily precipitation were derived from the
Global Precipitation Climatology Project (GPCP)
1°-daily combination (1DD) product, version 1.1, which
consists of the daily sum of precipitation amount
(mm day '; Huffman et al. 1997). The GPCP 1DD
product is the longest-running global daily precipitation
dataset (since October 1996) and has been extensively
validated (Adler et al. 2001, 2003; Yin et al. 2004). The
1DD product is a merge of rain gauge data and mea-
surements from geostationary and polar-orbiting satel-
lites. These different data streams have different
strengths and weaknesses. Rain gauges provide accurate
local estimates of precipitation, but their spatial cover-
age is sparse in many regions and point measurements
are statistically noisy (Petty 1995). Infrared sensors on
board geosynchronous satellites provide cloud-top
temperatures for the entire 40°N-40°S latitude band;
however, these measurements must be related to rain-
fall rates using empirical formulas, which can perform
poorly (Joyce et al. 2004). The GPCP 1DD also includes
information from polar-orbiting satellites, but such
satellites have limited spatial and temporal sampling
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resolution. McPhee and Margulis (2005) compared the
GPCP 1DD to measurements from the dense network
of rain gauges across the continental United States and
found rms error values of ~5 mm day'. Bolvin et al.
(2009) compared the GPCP 1DD to rain gauge mea-
surements from Finland and found that precipitation
occurrence was better captured by the GPCP 1DD than
corresponding precipitation event amounts.

3. Analysis

We computed annual, seasonal, and monthly coefficients
of variation (CVs) for solar radiation and precipitation.
The CV is a dimensionless metric of variability. The an-
nual CV consisted of the annual standard deviation of
daily data divided by the multidecadal mean. We com-
puted seasonal and monthly CVs in the same way except
that we only used data corresponding to the eponymous
season or month. For solar radiation, each CV time series
consisted of 24 points, one for each of the years 1984—
2007. For precipitation, each CV time series consisted of
11 points, corresponding to the years 1997-2007. In all
cases, the time variation of CV is attributable solely to
time variation in the standard deviation because the de-
nominator is a multidecadal mean.

Because we did not have prior knowledge of how to
parameterize the CV time dependence, we applied a
number of simple regression models to each grid cell’s
CV. These included 1) first- to fourth-degree polyno-
mial regressions, where the time is the independent
variable; 2) an exponential; and 3) a logarithm. All
models for which the Fisher test of the overall fit was
significant at the 95% confidence level were preserved
for further consideration, while the others were excluded
(throughout this paper, the 95% confidence level is
used as the threshold for statistical significance). In
addition, for the polynomial fits we required that the
coefficient of the highest-order term be significantly
different from zero. We note that the determination
of confidence intervals in ordinary regression analysis
requires that fit residuals be normally distributed, in-
dependent (i.e., not temporally autocorrelated), and
homoscedastic (i.e., the characteristic magnitude of
a residual is the same for different subpopulations of
residuals). Various statistical tests have been developed
to test these requirements. Here, we use the Shapiro—
Wilk test (Royston 1982) to evaluate the null hypothesis
of normality, the Ljung-Box test (Ljung and Box 1978)
to evaluate the null hypothesis of independence, and
the Breusch-Pagan test (Breusch and Pagan 1979) to
evaluate the null hypothesis of homoscedasticity. All
statistical tests are conducted in R (R Development
Core Team 2008).
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FI1G. 1. Distributions of daily solar radiation for a single grid cell
centered at 6.25°S, 23.75°E. The distributions are shown for two
periods: 1984-87 and 2004-07.

Of the significant models, we selected the one with
the smallest Akaike information criterion with second-
order bias correction (AIC,) (Akaike 1974; Burnham
and Anderson 2004). This selection criterion leads to
the selection of the most likely model but with a penal-
ty for the number of parameters. Under the assumption
that the model errors are independent and identically
distributed according to a normal distribution, the AIC,
can be expressed by

1
AIC, = n log(;RSS) + n(log2m + 1)

2k(k + 1)

+ok + D)
n—k—-1

(1)
where n is the number of observations, k is the number
of model parameters to be estimated, and RSS is the
residual sum of squares. The AIC, should be preferred

over ordinary AIC unless n/k > 40 so as to avoid over-
fitting (Burnham and Anderson 2004).

4. Results
a. Single-gridcell case study

To illustrate our statistical analysis, we first make a
detailed investigation of annual solar radiation for a
single ISCCP grid cell centered at 6.25°S, 23.75°E. We
find that the distribution of average daily solar radia-
tion changes over time, as depicted in Fig. 1. Here, we
see that the solar radiation distribution corresponding
to the 2004-07 period has more support in the tails (solar
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radiation in the ranges 50-135 and 285-325 W m?)
than the distribution corresponding to the 1984-87 pe-
riod. Moreover, the 2004-07 distribution is more sharply
peaked (solar radiation in the range 200-260 W m™?)
than the 1984-87 distribution. Overall, the standard de-
viation of daily solar radiation increases from 41.8 W m 2
in 1984-87 to 46.0 W m ™ in 2004-07.

Then we calculated the standard deviation of daily
solar radiation for each year in the 1984-2007 period
and converted this to a CV by dividing by the 1984—
2007 mean solar radiation, 230.7 W m 2. This time se-
ries of CV (Fig. 2a) suggests an increase in CV over
time. To test this, we carried out polynomial, exponen-
tial, and logarithmic ordinary least squares fits to these
data. The number of degrees of freedom is defined
by the difference between the number of observations
and the number of parameters to be estimated in each
model. For example, linear, exponential, and loga-
rithmic fits had 22 degrees of freedom. The linear fit
(also shown in Fig. 2a) minimized the AIC, and had
a p value less than 2 X 10~*. This can be interpreted as
a statistically significant fit at the 95% confidence level
if the fit residuals are normally distributed, independent,
and homoscedastic. Visual inspection of the residuals
(shown in Fig. 2b as a time series and in Fig. 2c as
a histogram) suggests that this may be the case, and in-
deed our statistical tests indicated that the null hypoth-
eses of normality, independence, and homoscedasticity
could not be rejected. This demonstrates that our
methodology and underlying assumptions are appro-
priate and supports the interpretation of the fit in Fig. 2a
as “‘statistically significant.” We note that this inter-
pretation is contingent only upon the statistics of the
residuals (Fig. 2) and, in particular, it does not depend
on the shape of the underlying solar radiation distri-
bution (Fig. 1).

b. Changes in solar radiation coefficient of variation

We then repeated our analysis for every ISCCP grid
cell. For 34% of the globe, at least one of the regressions
had a p value less than 0.05 (Fig. 3; note that this ex-
cludes the Indian Ocean sector, which lacked geosta-
tionary satellite coverage prior to 1998). Of models with
p < 0.05, the linear model was most commonly selected
as AIC,. minimizing (13 % of the globe), but higher degree
polynomials (5%-10% of the globe) and the exponential
model (2% of the globe) were also occasionally selected.
The logarithmic model was selected for less than 1% of
the globe. For each grid cell, the residuals of the selected
model were examined to test the null hypotheses of
normality, homoscedasticity, and independence. These
hypotheses were rejected for 3%, 2%, and 3% of the
globe, respectively. The smallness of these percentages
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FIG. 2. Analysis of daily solar radiation CV for a single grid cell
centered at 6.25°S, 23.75°E. (a) Open circles indicate the daily solar
radiation CV from the ISCCP dataset; the line is a linear regression.
(b) Time series of the residuals of the regression. (c) Histogram of
the residuals of the regression.
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FIG. 3. Percentage changes in the annual coefficient of variation
(CV) of solar radiation between 1984 and 2007: grid cells without
a statistically significant change are shown in gray and the Indian
Ocean sector is blacked out because data were not available for
much of this period.

relative to the amount of total significant area (35%,
Fig. 3) shows that our fits are appropriate and that their
associated p values are reliable to ascertain statistical
significance.

We calculated the change in solar radiation CV over the
whole 24-yr period using the significant AIC -minimizing
model assigned to each grid cell (Fig. 3). The Maritime
Continent and tropical Africa experienced large CV in-
creases, while changes in Western Hemisphere tropical
land were small. The central United States experienced
CV decreases. Decreases were also evident at high lati-
tudes. Overall, it was more common to see changes over
land than changes over ocean.

We repeated our analysis for seasonal CV to identify
the time of year that CV changes were occurring. For
each grid cell and each season, we determined which
models gave significant fits to the data and then selected
the model that minimized the AIC.. In December—
February, there were large, positive CV changes in
tropical land regions including the Maritime Continent,
southern tropical Africa, and the southwestern Amazon
(Fig. 4a). While these were all apparent in the annual CV
change, in December—February there was also a positive
CV change in northeastern North America and a nega-
tive CV change in the Sahel. In June—-August, there were
particularly large CV increases in the Maritime Con-
tinent and northern Africa (Fig. 4b). A previous study
has also identified multidecadal climate variability in the
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Maritime Continent during June—August (Wang et al.
2008). Relatively smaller CV changes were found in
March-May (Fig. 4c) or September—November (Fig. 4d).

c. Changes in precipitation coefficient of variation

We fit models to precipitation CV time series over the
period 1997-2007 using a similar procedure as for annual
solar radiation. Again, the number of degrees of free-
dom was equal to the number of years minus the number
of parameters to be estimated. We rejected both the null
hypotheses of normality and homoscedasticity for 5%
of the area with a significant model fit. However, we
rejected the null hypothesis of independence for 16% of
the area with a significant model fit. Because this per-
centage seemed large, we repeated our analysis using
generalized least squares under the assumption of a first-
order autoregressive process for the regression errors.
This increases the number of parameters to estimate by
one. In this case, we found that 40% of the globe had a
significant fit (Fig. 5). The Maritime Continent, tropical
Africa, and parts of tropical South America exhibited
increases in annual precipitation CV. There were large
negative changes in the eastern tropical Pacific. The lin-
ear feature around 60°S is likely an artifact of merging
data from geostationary and polar-orbiting satellites.

Despite being computed for different time periods,
changes in annual solar radiation CV and annual precip-
itation CV exhibited similarities in locations, including
tropical Africa and the Maritime Continent. We used the
Spearman rank correlation test to test for monotonic
association. This is a nonparametric test that does not
assume any functional form (e.g., linear) for the corre-
lation. Our analysis was limited to 1997-2007, the period
of overlap between GPCP and ISCCP datasets. Prior to
the analysis, solar radiation (original dataset available at
2.5° X 2.5°resolution) and precipitation (original dataset
available at 1° X 1° resolution) data were regridded to
a common 5° X 5° grid. The analysis was carried out for
annual and all monthly CV time series.

For the annual CV, we rejected the null hypothesis
(no correlation) for 21% of the globe. For monthly CV,
we rejected the null hypothesis (no correlation) for 29%—
38% of the globe, depending on the month. To illustrate
the spatial and seasonal variability, we computed the
fraction of the globe with significant positive correla-
tions and with significant negative correlations for each
latitude band and each month (Fig. 6). Positive corre-
lations were strongest (typically 50%-80% of surface
area) near the equator and decreased toward the poles
(Fig. 6a). There was also a seasonal cycle, with less sur-
face area exhibiting positive correlations in June—-August
than at other times. Much less surface area exhibited a
negative correlation (Fig. 6b).
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FIG. 4. Percentage change in the seasonal coefficient of variation of solar radiation between 1984 and 2007 for the seasons (a)
December-February, (b) June-August, (c) March-May, and (d) September—November: grid cells without a statistically significant change
are shown in gray and the Indian Ocean sector is blacked out because data were not available for much of this period.

d. Correlations between solar radiation
CV and cloud properties

Finally, we sought to assess whether changes in cloud
properties accompanied changes in solar radiation CV.
Three critical cloud properties available in the ISCCP
FD dataset include cloud amount, cloud-top height, and
cloud optical depth. Following Hahn et al. (2001), we
defined nine types of clouds on the basis of cloud-top

height and cloud optical depth. For each grid cell and
cloud type, we temporally averaged the cloud amount,
weighted by 3-hourly clear-sky solar radiation values.
This weighted averaging allowed us to minimize the
impact of nighttime clouds without having to do a com-
plicated diurnal analysis.

We used the Spearman rank correlation test to eval-
uate the 1984-2007 correlation between annual solar
radiation CV and the mean annual cloud amounts of
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FIG. 5. Percentage changes in the annual coefficient of variation

of precipitation between 1997 and 2007: grid cells without a statis-
tically significant change are shown in gray.

different cloud types. For deep convective clouds, the
correlation was significant for 42% of the globe (Fig. 7).
Except for the central and western Amazon, correlations
were positive and strong throughout the tropics. We also
tested for correlations between other cloud types and
annual solar radiation CV. These were significant for much
smaller amounts of surface area, ranging from 11% to23%
of the globe.

We fit polynomial, exponential, and logarithmic re-
gression models to the deep convective cloud amount
time series, following the same protocol as in section
4a. Consistent with the increases in solar radiation CV
(Fig. 3), we found significant increases in deep convec-
tive cloud amount for tropical Africa and the Maritime
Continent (Fig. 8a). Increases in tropical convection
during the 1990s have also been reported by Tselioudis
et al. (2010). It has been previously hypothesized that
temperature increases can cause increased convective
intensity over tropical land as a result of upward shifts in
the freezing level (Del Genio et al. 2007). If this is so and
if the correlation between deep convective clouds and
solar radiation CV is preserved, future warming may act
to increase solar radiation CV. Such a mechanism re-
quires more detailed study.

Unlike other tropical land areas, tropical South America
generally experienced decreases in deep convective cloud
fraction (Fig. 8a). We found that these decreases were
linked to a sudden change in deep convective cloud amount
that occurred in the Amazon around 1995 (Fig. 8b). We
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FIG. 6. Correlation between the monthly coefficient of variation
of precipitation and of solar radiation using 1997-2007 data: frac-
tional area for each latitude band and month with (a) significant
positive correlation and (b) significant negative correlation. Note
that the two panels use different scales.

do not know of any artifacts in the ISCCP dataset that
could have led to this persistent change (although
Meteosat-3 substituted for the Geostationary Opera-
tional Environmental Satellite (GOES)-East in the year
or two prior to 1995, the periods before and after have
similar GOES coverage). We investigated whether an-
nual solar radiation CV also changed at this time, but ¢
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FIG. 7. The Spearman rank correlation coefficient for annual
deep convective cloud amount and annual solar radiation co-
efficient of variation: grid cells without a statistically significant
change are shown in gray and the Indian Ocean sector is blacked
out because data were not available for much of this period.

tests indicated no significant difference between pre-
1995 and post-1995 CVs in most Amazon grid cells.
This change in deep convective cloud amount is co-
temporaneous with a phase change of the Atlantic
multidecadal oscillation (Goldenberg et al. 2001), which
may impact South American rainfall (Chiessi et al.
2009).

5. Conclusions

We conclude that there have been detectable changes
in high-frequency solar radiation and precipitation var-
iability over the past few decades. Changes in solar
radiation CV were large and positive for tropical Africa
and the Maritime Continent (Fig. 3). Interestingly, cor-
respondingly large changes in tropical South America
mainly occurred only during December—February (Fig. 4).
These continental locations where we detected changes
do not overlap with the mainly oceanic regions where
trend detection is sensitive to long-term changes in
satellite geometry (Evan et al. 2007). Although we also
detected negative trends in solar radiation CV at high
latitudes (Fig. 3), these high-latitude trends should be
regarded with caution because sampling errors and cloud
detection errors are much larger there than at lower
latitudes.

The solar radiation CV was correlated with precipi-
tation CV and deep convective cloud amount throughout
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FI1G. 8. Changes in deep convective cloud amount. (a) Percentage
change over the period 1984-2007: grid cells without a statistically
significant change are shown in gray and the Indian Ocean sector is
blacked out because data were not available for much of this pe-
riod. (b) Time series of annual-average deep convective cloud amount
for the Amazon region.

much of the tropics. In particular, the Maritime Conti-
nent and tropical Africa had significant increases in all
three quantities. Links between convective activity over
continents and temperature have already been suggested
(Del Genio et al. 2007). It is notable that changes in deep
convective cloud amount (and solar radiation CV) were
much lower over tropical oceans than tropical land. Be-
cause marine tropical lapse rates are expected to be
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nearly moist adiabatic under climate change (Held and
Soden 2006), we would not necessarily expect surface
warming to cause increases in deep convective cloud
amount. The possibility of a causal relationship between
deep convective cloud amount and solar radiation CV
and precipitation CV requires further study.

We expect that increased solar radiation CV will de-
crease the productivity of terrestrial ecosystems (Medvigy
et al. 2010). Photosynthesis increases with insolation, up to
a critical point, and then the response saturates. An in-
crease in the number of low insolation days will therefore
reduce photosynthesis, while an increase in the number
of high insolation days will have little effect. Quantifying
the future capacity of the terrestrial biosphere to se-
quester carbon should take into account changes in high
frequency variability. Furthermore, increases in solar ra-
diation CV can make solar energy conversion systems
less efficient (Ianetz et al. 2000) and impact the thermal
properties of buildings (Matiasovsky 1996). Finally, in-
creased deep convective cloud amount may result in in-
creases in diffuse radiation. While this can have a positive
effect on terrestrial ecosystems (Gu et al. 2003), it can also
make it more difficult to effectively orient solar cells.

There are several key aspects of high-frequency vari-
ability that require further investigation. First, the physi-
cal mechanisms that ultimately control the degree of
high-frequency variability require further investigation.
Climate models can also be used to understand current
and potential future changes, but this is challenging be-
cause high-frequency variances are seldom reported in
model output, and thus are rarely validated. In addition,
the higher order statistics of solar radiation and pre-
cipitation are likely to be sensitive to some of the most
uncertain model parameterizations, including those for
clouds. Another area requiring further investigation is the
analysis of CV trends in other climate variables, including
temperature (Vinnikov et al. 2002). Finally, at least in
the case of precipitation, variances can be sensitive to
extreme event frequency and intensity (Goswami et al.
2006). Analysis of this connection would be greatly ai-
ded by additional weather station data from tropical
land areas. Given the large number of processes that
are nonlinearly sensitive to climate, improving our un-
derstanding of current and future high-frequency vari-
ability should be a high-priority area of research.
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