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ABSTRACT

This study investigates the possibility of changes in daily scale solar radiation and precipitation variability.

Coefficients of variation (CVs) were computed for the daily downward surface solar radiation product from

the International Satellite Cloud Climatology Project and the daily precipitation product from the Global

Precipitation Climatology Project. Regression analysis was used to identify trends in CVs. Statistically sig-

nificant changes in solar radiation variability were found for 35% of the globe, and particularly large increases

were found for tropical Africa and the Maritime Continent. These increases in solar radiation variability were

correlated with increases in precipitation variability and increases in deep convective cloud amount. The

changes in high-frequency climate variability identified here have consequences for any process depending

nonlinearly on climate, including solar energy production and terrestrial ecosystem photosynthesis. To assess

these consequences, additional work is needed to understand how high-frequency climate variability will

change in the coming decades.

1. Introduction

Strategies for adaptation to climate change hinge on

the expected changes in the distribution functions of

climate variables. Contemporary climate studies have

overwhelmingly focused on two properties of the distri-

bution functions: the mean and the tails (i.e., extreme

events) (Trenberth et al. 2007). While these statistics

are clearly important, other statistics are also relevant

to humans, ecosystem structure and functioning, and

physical and chemical processes. In general, any process

that depends nonlinearly on a climate variable will be

sensitive to the variance of that climate variable. To il-

lustrate the range of processes satisfying this require-

ment, note that photosynthesis (Sinclair et al. 1976),

terrestrial ecosystems (Medvigy et al. 2010), and prop-

erties of solar cells (Gupta et al. 2002; Rahman et al.

2007; Boettcher et al. 2010) all depend nonlinearly on

downward solar radiation at the earth’s surface (‘‘solar

radiation’’), and that runoff and soil moisture (Marani

et al. 1997; Margulis and Entekhabi 2001), mosquito

populations (Koenraadt and Harrington 2008), and mi-

crobial respiration (Lee et al. 2004) all depend non-

linearly on precipitation. Thus, we expect changes in

climate variances to impact energy production, seques-

tration of carbon by the terrestrial biosphere, and dis-

ease outbreaks.

Previous studies have typically considered changes in

surface climate variances only in the context of extreme

events (e.g., Wettstein and Mearns 2002; Goswami et al.

2006). One exception is Vinnikov et al. (2002), who in-

vestigated changes in temperature variance at local me-

teorological stations. However, changes in variances and

changes in extremes are likely to have distinct impacts.

Taking the example of carbon budgets, high-frequency

variability of precipitation affects photosynthesis (Medvigy

et al. 2010) and respiration (Lee et al. 2004) in ways that are

totally different from the impacts of low-frequency extreme

storms (Dupigny-Giroux et al. 2003) or droughts. The po-

tential consequences of changes in high-frequency vari-

ability in the twenty-first century may be large, potentially
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impacting some terrestrial ecosystems as strongly as an-

ticipated changes in mean climate (Medvigy et al. 2010).

To our knowledge, there have been no global-scale studies

of historical changes in variances of surface climate vari-

ables. In this work, we seek to address this knowledge gap

by using satellite datasets to obtain the high-frequency,

long-term measurements of climate variables needed

for global analysis. We focus on solar radiation and

precipitation.

We describe the relevant datasets in section 2 and our

analysis methods in section 3. In section 4, we first present

a case study that illustrates our analysis and then identi-

fy locations that have experienced statistically significant

changes in solar radiation and precipitation variability,

and where these changes are related to changes in cloud-

iness. We present our conclusions in section 5.

2. Datasets

Our analysis used 24 yr (1984–2007) of International

Satellite Cloud Climatology Project (ISCCP) radiative

flux (FD) and cloud products available on a 280-km

equal-area grid (Zhang et al. 2004). The FD estimates of

the downward surface flux of total solar radiation were

derived using ISCCP clouds and other meteorological

data in conjunction with radiative transfer code

(Zhang et al. 2004, 2007). The solar radiation estimates,

obtained eight times daily, have been used to construct

time-averaged solar radiation values over 3-hourly in-

tervals that account for variation in solar zenith angle

(Zhang et al. 1995). Daily averages are obtained by

averaging the 3-hourly values for each day. This ap-

proach is designed to yield accurate values of daily-av-

eraged solar radiation and has been evaluated in

previous work (Zhang et al. 1995). Other solar radiation

datasets that span similar time periods exist, but they

incorporate the same ISCCP cloud data (e.g., Gupta

et al. 2006).

Previous studies have carefully quantified uncertain-

ties in ISCCP solar radiation estimates (Whitlock et al.

1995; Zhang et al. 1995, 2004, 2007, 2010). A substantial

portion of the uncertainty arises from errors in the input

data, including aerosol information, cloud properties,

and atmospheric conditions, rather than errors in the

radiative transfer model (Zhang et al. 2004, 2010). In

clear-sky cases, much of the mismatch between surface

observations and ISCCP FD solar radiation can be at-

tributed to mismatches in aerosol optical depths (Zhang

et al. 2010). Uncertainties in daily mean solar radiation

can also arise from nonuniform sampling (the number

of daytime samples varies with season and latitude, and

the samples were collected with some variation in their

temporal separation). Furthermore, for any 3-hourly

period, about 15% of the globe has missing data. Zhang

et al. (1995) tested several filling methodologies and

found that filling physical properties using a nearby

value in time at the same location (as done in the ISCCP

dataset) produced lower rms errors than direct filling

of fluxes in the calculated solar radiation. Further eval-

uation of uncertainties in solar radiation arising from

sampling and from the filling of missing data can be

found in Zhang et al. (1995, 2004, 2010). Efforts to en-

sure constant and common calibration among ISCCP

satellites have also been described (Rossow and Schiffer

1991; Desormeaux et al. 1993; Brest et al. 1997).

Our ability to accurately detect significant trends in

solar radiation variability may be compromised if the

sources of error exhibit strong heteroscedasticity (i.e.,

time-varying error variances), in which case trends in the

error can potentially be mistaken for trends in vari-

ability. There are several regions of particular concern.

One is the Indian Ocean sector, which lacked good

geostationary satellite coverage until ;1998. We have

therefore omitted this region from our 1984–2007 anal-

yses. We are also cautious about the latitude band near

608N/S because this is approximately the transition re-

gion between geostationary and polar-orbiting satellites.

Finally, Evan et al. (2007) argued that changes in satel-

lite viewing geometry can give the appearance of a trend

in ISCCP cloud amount where a trend does not neces-

sarily exist. However, this effect was limited to relatively

few regions of the world, including the central Pacific,

western Atlantic, and tropical Indian Oceans. In par-

ticular, little tropical land was biased by this effect.

Values of daily precipitation were derived from the

Global Precipitation Climatology Project (GPCP)

18-daily combination (1DD) product, version 1.1, which

consists of the daily sum of precipitation amount

(mm day21; Huffman et al. 1997). The GPCP 1DD

product is the longest-running global daily precipitation

dataset (since October 1996) and has been extensively

validated (Adler et al. 2001, 2003; Yin et al. 2004). The

1DD product is a merge of rain gauge data and mea-

surements from geostationary and polar-orbiting satel-

lites. These different data streams have different

strengths and weaknesses. Rain gauges provide accurate

local estimates of precipitation, but their spatial cover-

age is sparse in many regions and point measurements

are statistically noisy (Petty 1995). Infrared sensors on

board geosynchronous satellites provide cloud-top

temperatures for the entire 408N–408S latitude band;

however, these measurements must be related to rain-

fall rates using empirical formulas, which can perform

poorly (Joyce et al. 2004). The GPCP 1DD also includes

information from polar-orbiting satellites, but such

satellites have limited spatial and temporal sampling
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resolution. McPhee and Margulis (2005) compared the

GPCP 1DD to measurements from the dense network

of rain gauges across the continental United States and

found rms error values of ;5 mm day21. Bolvin et al.

(2009) compared the GPCP 1DD to rain gauge mea-

surements from Finland and found that precipitation

occurrence was better captured by the GPCP 1DD than

corresponding precipitation event amounts.

3. Analysis

We computed annual, seasonal, and monthly coefficients

of variation (CVs) for solar radiation and precipitation.

The CV is a dimensionless metric of variability. The an-

nual CV consisted of the annual standard deviation of

daily data divided by the multidecadal mean. We com-

puted seasonal and monthly CVs in the same way except

that we only used data corresponding to the eponymous

season or month. For solar radiation, each CV time series

consisted of 24 points, one for each of the years 1984–

2007. For precipitation, each CV time series consisted of

11 points, corresponding to the years 1997–2007. In all

cases, the time variation of CV is attributable solely to

time variation in the standard deviation because the de-

nominator is a multidecadal mean.

Because we did not have prior knowledge of how to

parameterize the CV time dependence, we applied a

number of simple regression models to each grid cell’s

CV. These included 1) first- to fourth-degree polyno-

mial regressions, where the time is the independent

variable; 2) an exponential; and 3) a logarithm. All

models for which the Fisher test of the overall fit was

significant at the 95% confidence level were preserved

for further consideration, while the others were excluded

(throughout this paper, the 95% confidence level is

used as the threshold for statistical significance). In

addition, for the polynomial fits we required that the

coefficient of the highest-order term be significantly

different from zero. We note that the determination

of confidence intervals in ordinary regression analysis

requires that fit residuals be normally distributed, in-

dependent (i.e., not temporally autocorrelated), and

homoscedastic (i.e., the characteristic magnitude of

a residual is the same for different subpopulations of

residuals). Various statistical tests have been developed

to test these requirements. Here, we use the Shapiro–

Wilk test (Royston 1982) to evaluate the null hypothesis

of normality, the Ljung–Box test (Ljung and Box 1978)

to evaluate the null hypothesis of independence, and

the Breusch–Pagan test (Breusch and Pagan 1979) to

evaluate the null hypothesis of homoscedasticity. All

statistical tests are conducted in R (R Development

Core Team 2008).

Of the significant models, we selected the one with

the smallest Akaike information criterion with second-

order bias correction (AICc) (Akaike 1974; Burnham

and Anderson 2004). This selection criterion leads to

the selection of the most likely model but with a penal-

ty for the number of parameters. Under the assumption

that the model errors are independent and identically

distributed according to a normal distribution, the AICc

can be expressed by

AICc 5 n log
1

n
RSS

� �
1 n(log2p 1 1)

1 2k 1
2k(k 1 1)

n 2 k 2 1
, (1)

where n is the number of observations, k is the number

of model parameters to be estimated, and RSS is the

residual sum of squares. The AICc should be preferred

over ordinary AIC unless n/k . 40 so as to avoid over-

fitting (Burnham and Anderson 2004).

4. Results

a. Single-gridcell case study

To illustrate our statistical analysis, we first make a

detailed investigation of annual solar radiation for a

single ISCCP grid cell centered at 6.258S, 23.758E. We

find that the distribution of average daily solar radia-

tion changes over time, as depicted in Fig. 1. Here, we

see that the solar radiation distribution corresponding

to the 2004–07 period has more support in the tails (solar

FIG. 1. Distributions of daily solar radiation for a single grid cell

centered at 6.258S, 23.758E. The distributions are shown for two

periods: 1984–87 and 2004–07.
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radiation in the ranges 50–135 and 285–325 W m22)

than the distribution corresponding to the 1984–87 pe-

riod. Moreover, the 2004–07 distribution is more sharply

peaked (solar radiation in the range 200–260 W m22)

than the 1984–87 distribution. Overall, the standard de-

viation of daily solar radiation increases from 41.8 W m22

in 1984–87 to 46.0 W m22 in 2004–07.

Then we calculated the standard deviation of daily

solar radiation for each year in the 1984–2007 period

and converted this to a CV by dividing by the 1984–

2007 mean solar radiation, 230.7 W m22. This time se-

ries of CV (Fig. 2a) suggests an increase in CV over

time. To test this, we carried out polynomial, exponen-

tial, and logarithmic ordinary least squares fits to these

data. The number of degrees of freedom is defined

by the difference between the number of observations

and the number of parameters to be estimated in each

model. For example, linear, exponential, and loga-

rithmic fits had 22 degrees of freedom. The linear fit

(also shown in Fig. 2a) minimized the AICc and had

a p value less than 2 3 1024. This can be interpreted as

a statistically significant fit at the 95% confidence level

if the fit residuals are normally distributed, independent,

and homoscedastic. Visual inspection of the residuals

(shown in Fig. 2b as a time series and in Fig. 2c as

a histogram) suggests that this may be the case, and in-

deed our statistical tests indicated that the null hypoth-

eses of normality, independence, and homoscedasticity

could not be rejected. This demonstrates that our

methodology and underlying assumptions are appro-

priate and supports the interpretation of the fit in Fig. 2a

as ‘‘statistically significant.’’ We note that this inter-

pretation is contingent only upon the statistics of the

residuals (Fig. 2) and, in particular, it does not depend

on the shape of the underlying solar radiation distri-

bution (Fig. 1).

b. Changes in solar radiation coefficient of variation

We then repeated our analysis for every ISCCP grid

cell. For 34% of the globe, at least one of the regressions

had a p value less than 0.05 (Fig. 3; note that this ex-

cludes the Indian Ocean sector, which lacked geosta-

tionary satellite coverage prior to 1998). Of models with

p , 0.05, the linear model was most commonly selected

as AICc minimizing (13% of the globe), but higher degree

polynomials (5%–10% of the globe) and the exponential

model (2% of the globe) were also occasionally selected.

The logarithmic model was selected for less than 1% of

the globe. For each grid cell, the residuals of the selected

model were examined to test the null hypotheses of

normality, homoscedasticity, and independence. These

hypotheses were rejected for 3%, 2%, and 3% of the

globe, respectively. The smallness of these percentages

FIG. 2. Analysis of daily solar radiation CV for a single grid cell

centered at 6.258S, 23.758E. (a) Open circles indicate the daily solar

radiation CV from the ISCCP dataset; the line is a linear regression.

(b) Time series of the residuals of the regression. (c) Histogram of

the residuals of the regression.
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relative to the amount of total significant area (35%,

Fig. 3) shows that our fits are appropriate and that their

associated p values are reliable to ascertain statistical

significance.

We calculated the change in solar radiation CV over the

whole 24-yr period using the significant AICc-minimizing

model assigned to each grid cell (Fig. 3). The Maritime

Continent and tropical Africa experienced large CV in-

creases, while changes in Western Hemisphere tropical

land were small. The central United States experienced

CV decreases. Decreases were also evident at high lati-

tudes. Overall, it was more common to see changes over

land than changes over ocean.

We repeated our analysis for seasonal CV to identify

the time of year that CV changes were occurring. For

each grid cell and each season, we determined which

models gave significant fits to the data and then selected

the model that minimized the AICc. In December–

February, there were large, positive CV changes in

tropical land regions including the Maritime Continent,

southern tropical Africa, and the southwestern Amazon

(Fig. 4a). While these were all apparent in the annual CV

change, in December–February there was also a positive

CV change in northeastern North America and a nega-

tive CV change in the Sahel. In June–August, there were

particularly large CV increases in the Maritime Con-

tinent and northern Africa (Fig. 4b). A previous study

has also identified multidecadal climate variability in the

Maritime Continent during June–August (Wang et al.

2008). Relatively smaller CV changes were found in

March–May (Fig. 4c) or September–November (Fig. 4d).

c. Changes in precipitation coefficient of variation

We fit models to precipitation CV time series over the

period 1997–2007 using a similar procedure as for annual

solar radiation. Again, the number of degrees of free-

dom was equal to the number of years minus the number

of parameters to be estimated. We rejected both the null

hypotheses of normality and homoscedasticity for 5%

of the area with a significant model fit. However, we

rejected the null hypothesis of independence for 16% of

the area with a significant model fit. Because this per-

centage seemed large, we repeated our analysis using

generalized least squares under the assumption of a first-

order autoregressive process for the regression errors.

This increases the number of parameters to estimate by

one. In this case, we found that 40% of the globe had a

significant fit (Fig. 5). The Maritime Continent, tropical

Africa, and parts of tropical South America exhibited

increases in annual precipitation CV. There were large

negative changes in the eastern tropical Pacific. The lin-

ear feature around 608S is likely an artifact of merging

data from geostationary and polar-orbiting satellites.

Despite being computed for different time periods,

changes in annual solar radiation CV and annual precip-

itation CV exhibited similarities in locations, including

tropical Africa and the Maritime Continent. We used the

Spearman rank correlation test to test for monotonic

association. This is a nonparametric test that does not

assume any functional form (e.g., linear) for the corre-

lation. Our analysis was limited to 1997–2007, the period

of overlap between GPCP and ISCCP datasets. Prior to

the analysis, solar radiation (original dataset available at

2.58 3 2.58 resolution) and precipitation (original dataset

available at 18 3 18 resolution) data were regridded to

a common 58 3 58 grid. The analysis was carried out for

annual and all monthly CV time series.

For the annual CV, we rejected the null hypothesis

(no correlation) for 21% of the globe. For monthly CV,

we rejected the null hypothesis (no correlation) for 29%–

38% of the globe, depending on the month. To illustrate

the spatial and seasonal variability, we computed the

fraction of the globe with significant positive correla-

tions and with significant negative correlations for each

latitude band and each month (Fig. 6). Positive corre-

lations were strongest (typically 50%–80% of surface

area) near the equator and decreased toward the poles

(Fig. 6a). There was also a seasonal cycle, with less sur-

face area exhibiting positive correlations in June–August

than at other times. Much less surface area exhibited a

negative correlation (Fig. 6b).

FIG. 3. Percentage changes in the annual coefficient of variation

(CV) of solar radiation between 1984 and 2007: grid cells without

a statistically significant change are shown in gray and the Indian

Ocean sector is blacked out because data were not available for

much of this period.
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d. Correlations between solar radiation
CV and cloud properties

Finally, we sought to assess whether changes in cloud

properties accompanied changes in solar radiation CV.

Three critical cloud properties available in the ISCCP

FD dataset include cloud amount, cloud-top height, and

cloud optical depth. Following Hahn et al. (2001), we

defined nine types of clouds on the basis of cloud-top

height and cloud optical depth. For each grid cell and

cloud type, we temporally averaged the cloud amount,

weighted by 3-hourly clear-sky solar radiation values.

This weighted averaging allowed us to minimize the

impact of nighttime clouds without having to do a com-

plicated diurnal analysis.

We used the Spearman rank correlation test to eval-

uate the 1984–2007 correlation between annual solar

radiation CV and the mean annual cloud amounts of

FIG. 4. Percentage change in the seasonal coefficient of variation of solar radiation between 1984 and 2007 for the seasons (a)

December–February, (b) June–August, (c) March–May, and (d) September–November: grid cells without a statistically significant change

are shown in gray and the Indian Ocean sector is blacked out because data were not available for much of this period.
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different cloud types. For deep convective clouds, the

correlation was significant for 42% of the globe (Fig. 7).

Except for the central and western Amazon, correlations

were positive and strong throughout the tropics. We also

tested for correlations between other cloud types and

annual solar radiation CV. These were significant for much

smaller amounts of surface area, ranging from 11% to 23%

of the globe.

We fit polynomial, exponential, and logarithmic re-

gression models to the deep convective cloud amount

time series, following the same protocol as in section

4a. Consistent with the increases in solar radiation CV

(Fig. 3), we found significant increases in deep convec-

tive cloud amount for tropical Africa and the Maritime

Continent (Fig. 8a). Increases in tropical convection

during the 1990s have also been reported by Tselioudis

et al. (2010). It has been previously hypothesized that

temperature increases can cause increased convective

intensity over tropical land as a result of upward shifts in

the freezing level (Del Genio et al. 2007). If this is so and

if the correlation between deep convective clouds and

solar radiation CV is preserved, future warming may act

to increase solar radiation CV. Such a mechanism re-

quires more detailed study.

Unlike other tropical land areas, tropical South America

generally experienced decreases in deep convective cloud

fraction (Fig. 8a). We found that these decreases were

linked to a sudden change in deep convective cloud amount

that occurred in the Amazon around 1995 (Fig. 8b). We

do not know of any artifacts in the ISCCP dataset that

could have led to this persistent change (although

Meteosat-3 substituted for the Geostationary Opera-

tional Environmental Satellite (GOES)-East in the year

or two prior to 1995, the periods before and after have

similar GOES coverage). We investigated whether an-

nual solar radiation CV also changed at this time, but t

FIG. 5. Percentage changes in the annual coefficient of variation

of precipitation between 1997 and 2007: grid cells without a statis-

tically significant change are shown in gray.

FIG. 6. Correlation between the monthly coefficient of variation

of precipitation and of solar radiation using 1997–2007 data: frac-

tional area for each latitude band and month with (a) significant

positive correlation and (b) significant negative correlation. Note

that the two panels use different scales.
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tests indicated no significant difference between pre-

1995 and post-1995 CVs in most Amazon grid cells.

This change in deep convective cloud amount is co-

temporaneous with a phase change of the Atlantic

multidecadal oscillation (Goldenberg et al. 2001), which

may impact South American rainfall (Chiessi et al.

2009).

5. Conclusions

We conclude that there have been detectable changes

in high-frequency solar radiation and precipitation var-

iability over the past few decades. Changes in solar

radiation CV were large and positive for tropical Africa

and the Maritime Continent (Fig. 3). Interestingly, cor-

respondingly large changes in tropical South America

mainly occurred only during December–February (Fig. 4).

These continental locations where we detected changes

do not overlap with the mainly oceanic regions where

trend detection is sensitive to long-term changes in

satellite geometry (Evan et al. 2007). Although we also

detected negative trends in solar radiation CV at high

latitudes (Fig. 3), these high-latitude trends should be

regarded with caution because sampling errors and cloud

detection errors are much larger there than at lower

latitudes.

The solar radiation CV was correlated with precipi-

tation CV and deep convective cloud amount throughout

much of the tropics. In particular, the Maritime Conti-

nent and tropical Africa had significant increases in all

three quantities. Links between convective activity over

continents and temperature have already been suggested

(Del Genio et al. 2007). It is notable that changes in deep

convective cloud amount (and solar radiation CV) were

much lower over tropical oceans than tropical land. Be-

cause marine tropical lapse rates are expected to be

FIG. 7. The Spearman rank correlation coefficient for annual

deep convective cloud amount and annual solar radiation co-

efficient of variation: grid cells without a statistically significant

change are shown in gray and the Indian Ocean sector is blacked

out because data were not available for much of this period.

FIG. 8. Changes in deep convective cloud amount. (a) Percentage

change over the period 1984–2007: grid cells without a statistically

significant change are shown in gray and the Indian Ocean sector is

blacked out because data were not available for much of this pe-

riod. (b) Time series of annual-average deep convective cloud amount

for the Amazon region.
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nearly moist adiabatic under climate change (Held and

Soden 2006), we would not necessarily expect surface

warming to cause increases in deep convective cloud

amount. The possibility of a causal relationship between

deep convective cloud amount and solar radiation CV

and precipitation CV requires further study.

We expect that increased solar radiation CV will de-

crease the productivity of terrestrial ecosystems (Medvigy

et al. 2010). Photosynthesis increases with insolation, up to

a critical point, and then the response saturates. An in-

crease in the number of low insolation days will therefore

reduce photosynthesis, while an increase in the number

of high insolation days will have little effect. Quantifying

the future capacity of the terrestrial biosphere to se-

quester carbon should take into account changes in high

frequency variability. Furthermore, increases in solar ra-

diation CV can make solar energy conversion systems

less efficient (Ianetz et al. 2000) and impact the thermal

properties of buildings (Matiasovsky 1996). Finally, in-

creased deep convective cloud amount may result in in-

creases in diffuse radiation. While this can have a positive

effect on terrestrial ecosystems (Gu et al. 2003), it can also

make it more difficult to effectively orient solar cells.

There are several key aspects of high-frequency vari-

ability that require further investigation. First, the physi-

cal mechanisms that ultimately control the degree of

high-frequency variability require further investigation.

Climate models can also be used to understand current

and potential future changes, but this is challenging be-

cause high-frequency variances are seldom reported in

model output, and thus are rarely validated. In addition,

the higher order statistics of solar radiation and pre-

cipitation are likely to be sensitive to some of the most

uncertain model parameterizations, including those for

clouds. Another area requiring further investigation is the

analysis of CV trends in other climate variables, including

temperature (Vinnikov et al. 2002). Finally, at least in

the case of precipitation, variances can be sensitive to

extreme event frequency and intensity (Goswami et al.

2006). Analysis of this connection would be greatly ai-

ded by additional weather station data from tropical

land areas. Given the large number of processes that

are nonlinearly sensitive to climate, improving our un-

derstanding of current and future high-frequency vari-

ability should be a high-priority area of research.
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