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ABSTRACT: This paper presents a statistical analysis of structural changes in the Central England temperature series, one of
the longest surface temperature records available. A changepoint analysis is performed to detect abrupt changes, which can be
regarded as a preliminary step before further analysis is conducted to identify the causes of the changes (e.g., artificial, human-
induced, or natural variability). Regression models with structural breaks, including mean and trend shifts, are fitted to the series
and compared via two commonly used multiple changepoint penalized likelihood criteria that balance model fit quality (as mea-
sured by likelihood) against parsimony considerations. Our changepoint model fits, with independent and short-memory errors,
are also compared with a different class of models termed long-memory models that have been previously used by other authors
to describe persistence features in temperature series. In the end, the optimal model is judged to be one containing a change-
point in the late 1980s, with a transition to an intensified warming regime. This timing and warming conclusion is consistent
across changepoint models compared in this analysis. The variability of the series is not found to be significantly changing, and
shift features are judged to be more plausible than either short- or long-memory autocorrelations. The final proposed model is
one including trend shifts (both intercept and slope parameters) with independent errors. The analysis serves as a walk-through
tutorial of different changepoint techniques, illustrating what can be statistically inferred.
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1. Introduction

Climate time series often contain abrupt changes and other
nonlinearities in their behavior. Changepoints are times of abrupt
shifts in a series’ characteristics, including means, trends, varian-
ces, and autocorrelations. For examples, a sudden change from a
cooling period (i.e., decreasing trend) to a warming period can
be characterized by a changepoint in the trend; a sudden increase
due to the relocation of a station may be characterized as a
changepoint in the mean. Abrupt changes may be caused by
changes in climate forcings, related to climate variability in the
ocean and atmosphere, or induced by artificial changes in mea-
surement procedures such as station relocations or instrumenta-
tion changes.

It is crucial to know changepoint times in climate series, espe-
cially when assessing long-term trends, as their presence may
grossly alter trend estimates, which impedes our understanding
of external forcings and climate variability over the instrumen-
tal record (Lund et al. 2007; Beaulieu et al. 2012; Cahill et al.
2015; Beaulieu and Killick 2018). Series with artificial changes
merit adjustment via homogenization methods, as trends and
extreme quantiles are more accurately estimated from homoge-
nized data (Hewaarachchi et al. 2017; Trewin et al. 2020; Vincent
et al. 2020). On average, approximately six station relocations or
instrumentation changes occur over a century in a randomly
selected U.S. climate station (Mitchell 1953; Menne andWilliams

2009). As such, a changepoint analysis of a climate series is often
a worthy initial exploratory endeavor.

Statistical methods to detect changepoints have rapidly
evolved over the last few decades. These include methods to
detect a single shift in the series’ mean (Chernoff and Zacks
1964), in its variance (Hsu 1977), or in a general linear regres-
sion model (Quandt 1958; Robbins et al. 2016). In the climate lit-
erature, changepoint detection has most often been used to
detect mean shifts. However, this may result in misinterpreting a
long-term climate trend as a sequence of mean shifts that follows
(approximates) the trend (Beaulieu and Killick 2018).

Much of the changepoint literature assumes independent and
identically distributed model errors (termed “white noise” here).
However, climate time series are often autocorrelated, inducing
memory at time scales longer than the measurement frequency
(Hasselmann 1976). This memory is often modeled as a first-
order autoregressive [AR(1)] process in climate studies (Lund
et al. 2007; Robbins et al. 2011; Hartmann et al. 2013). In an
AR(1) model, autocorrelation geometrically decays to zero with
increasing time, representing one type of short-term memory. In
the climate setting, it is important to allow autocorrelation and
mean shift model features in tandem as both can inject similar
run patterns into a climate series. An alternative is to use pre-
whitening techniques that mitigate the effects of autocorrelation
(Robbins et al. 2011; Serinaldi and Kilsby 2016). Beaulieu and
Killick (2018), Shi et al. (2022), and Gallagher et al. (2022) show
that changepoint inferences can be drastically wrong if autocor-
relation in a series is ignored. The memory in climate series has
also been modeled as a long-memory process, where autocorre-
lation decays as a power law (Yuan et al. 2015). Long-memory
processes and changepoint models can be confused as they both
have similar spectrums. Unfortunately, this ambiguity may lead
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to misleading inferences. Beaulieu et al. (2020) discuss how to dis-
tinguish changepoints and longmemory in surface temperatures.

Multiple changepoints may be present in climate series.
Methods designed to detect a single changepoint have been
applied iteratively to estimate multiple changepoint configura-
tions through a process known as binary segmentation (Scott
and Knott 1974; Rodionov 2004). Binary segmentation is now
known to perform poorly in multiple changepoint problems
(Shi et al. 2022) [see Fryzlewicz (2014) for an interesting attempt
to fix binary segmentation]. Penalized likelihood methods, the
approach taken here, were developed in Davis et al. (2006), Lu
et al. (2010), Killick et al. (2012), and Li and Lund (2012) and
tend to perform better (Shi et al. 2022). Here, a likelihood, which
measures the goodness of the statistical model fit, is balanced
against a penalty that prevents fitting too many changepoints.
Penalized likelihood methods can allow for autocorrelation.
Bayesian approaches to the multiple changepoint problem
also exist. Most of these place some sort of prior distribution
on the changepoint times, for instance a spike and slab prior
(see Barry and Hartigan 1993; Chib 1998; Fearnhead 2006;
Cappello et al. 2021, and references within). Li et al. (2019)
construct an informative prior on the changepoint times
from the station’s metadata record. The references above
are by no means exhaustive; indeed, the changepoint litera-
ture is vastly expanding.

As most methodological statistics papers are not written with
user comprehension in mind, the technical changepoint literature
can seem impenetrable to non-statisticians, making it challenging
to select an appropriate approach for the climate scientist. Com-
pounding difficulties, Lund and Reeves (2002) and Beaulieu and
Killick (2018) show that spurious changepoint inferences easily
occur when prominent data features (e.g., autocorrelation, long-
term trend) are ignored}the choice of model and method is crit-
ical in changepoint analyses. Indeed, changepoint techniques can
produce different results when the models and assumptions are
only slightly changed.

The aim of this paper is to present, through an example, a
comprehensive changepoint analysis of a climate series. To this
end, we analyze the Central England temperature (CET) series
by fitting different changepoint models capable of detecting shifts
in trends. We also compare our changepoint fits with long-
memory models. Our focus is on penalized likelihood multiple
changepoint techniques, enabling us to compare several models
while preventing overestimation of the number of changepoints.
We also discuss mean shift models and how they fit data contain-
ing a long-term trend such as the CET series. Emphasis is placed
on implementation and interpretation over the theoretical foun-
dations of penalized likelihoods. Nonetheless, references to the
formal statistical literature are provided.

The rest of this paper proceeds as follows. The CET series
used here is introduced in the next section. Section 3 then pro-
vides some rudimentary background on changepoint models, de-
scribing the penalized likelihood methods used here. The next
three sections present fits of various multiple changepoint mod-
els. Results for each type of model motivate the subsequent fits.
Remarks about the optimal model are made in the final section
along with concluding comments.

2. The CET series

The CET time series is perhaps the longest instrumental record
of surface temperatures in the world, commencing in 1659 and
spanning 362 years through 2020. The CET series is a benchmark
for European climate studies, as it is sensitive to atmospheric vari-
ability in the North Atlantic (Parker et al. 1992). This record has
been previously analyzed for long-term changes (Plaut et al. 1995;
Harvey and Mills 2003; Hillebrand and Proietti 2017); however,
to our knowledge, no detailed changepoint analysis of it has been
previously conducted. Changepoints are plausible in the CET
record for several reasons. First, artificial shifts near the record’s
onset may exist at times when data quality was lower (Parker
et al. 1992). Furthermore, an increase in the pace of climate
warming arising globally during the 1960s–1970s (Beaulieu and
Killick 2018; Cahill et al. 2015) may be present. The length of
the CET record affords us the opportunity to explore a variety
of temperature features.

The CET series, available at https://www.metoffice.gov.uk/
hadobs/hadcet/, was provided by the U.K. Met Office. Measure-
ments commenced in 1659 and were mostly compiled by Manley
(1953, 1974) until 1973, and then continued and updated to 1991
in Parker et al. (1992). The series is now kept by the Hadley
Centre Met Office. The CET time series is an annual composite
of 15 stations in the United Kingdom, located over a roughly tri-
angular area bounded by Lancashire, London, and Bristol. The
series is thus representative of the climate of the English Mid-
lands. The station locations used to form the composite series
are depicted in the top graphic in Fig. 1. The CET temperatures,
presented in the bottom graphic of Fig. 1, have been previously
adjusted for inhomogeneities due to changes in measurement
practices through time (Manley 1953, 1974; Parker et al. 1992),
and for urban warming since 1960 (Parker and Horton 2005).
However, until 1722, available instrumental records used in the
CET time series did not overlap. As such, noninstrumental
weather diaries and the Utrecht instrumental series were used to
adjust the CET series and fill the gaps (Parker et al. 1992).
Between 1722 and 1760, there are no gaps in the composite
record of all stations, but observations were generally collected
in unheated rooms as opposed to outdoors. A few outdoor tem-
perature measurements were collected and used to establish rela-
tionships between temperatures in unheated rooms and
outdoors. These relationships were then used to adjust the CET
time series (Parker et al. 1992). The daily CET time series starts
in 1772 and has been used to update the monthly series (Parker
et al. 1992). As such, some authors use only the data post-1772
for their analyses (Hillebrand and Proietti 2017). In this paper,
we conduct a changepoint analysis on both the full CET time
series (1659–2020) and the truncated series (1772–2020) that
excludes the poorer quality data at the beginning of the record.

3. Structural change models

To explore structural changes in the CET series, a hierarchical
changepoint analysis, gradually building on past findings, will be
conducted. Let Xt denote the annual temperature observed at
time t and suppose that data from the years 1, … , N are avail-
able. In general, a changepoint analysis partitions the series into
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m 1 1 distinct regimes, each regime having homogeneous char-
acteristics. The number of changepointsm is unknown and needs
to be estimated from the series. Let ti denote the ith changepoint
time; boundary conditions take t0 5 0 and tm11 5 N.

All regression models in this paper have the time series
regression form

Xt 5 f (t) 1 �t, t 5 1, 2,…,N, (1)

where f(t) 5 E[Xt] is the mean of the series at time t. The
structural form of f will vary, generally containing location
and/or trend parameters and their shifts; each model form will
be discussed as we proceed. The model errors {�t}Nt51 have
zero mean and may be correlated in time. We work with
AR(1) errors for simplicity, but more complex time series
models are possible. While it is important to allow for auto-
correlation in annual data, the form of the correlation struc-
ture is typically not as crucial as its presence.

The AR(1) difference equation governing the errors {�t} is

�t 5 f�t21 1 Zt,

where f ∈ (21, 1) and {Zt} is zero mean white noise (WN)
with unknown variance s2. Solutions to the AR(1) equation
have exponentially decaying correlations: Corr(�t, �t1h) 5 fh

for h $ 0. Because the data are annually averaged, Gaussian
distributed errors {�t} are statistically realistic. An implication
of this is that future model likelihood functions will be Gaussian
based.

Methods for handling multiple changepoint analyses without
penalized likelihoods exist. One popular technique is termed
binary segmentation (Scott and Knott 1974). Binary segmenta-
tion works with any single changepoint technique, termed an
“at most one change” (AMOC) method. Many AMOC tests
have been developed, including cumulative sums (CUSUM)
(Page 1954), likelihood ratios (Jandhyala et al. 2013), Chow

FIG. 1. Station locations and annual average temperatures of Central England.
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tests (Chow 1960), and sum of squared CUSUM tests (Shi et al.
2022). Binary segmentation first analyzes the entire series for a
changepoint. If a changepoint is found, the series is split into
subsegments about the identified changepoint time and the
two subsegments are further scrutinized for additional change-
points. The procedure is repeated iteratively until no subseg-
ments are deemed to have changepoints. While simple and
computationally convenient, binary segmentation is one of the
poorer performing multiple changepoint techniques (Shi et al.
2022), often being fooled by changepoints that occur close to
one another or multiple shifts that move the series in opposite
directions. There have been attempts to fix binary segmen-
tation; see the wild binary segmentation and related meth-
ods in Fryzlewicz (2014) and Eichinger and Kirch (2018).
Unfortunately, these techniques typically assume indepen-
dent model errors or are restricted to single parameter
changes per regime (e.g., mean shifts only). Perhaps worse,
wild binary segmentation tends to overestimate change-
point numbers when they are in truth infrequent (Lund
and Shi 2020).

To estimate the changepoint structure and model param-
eters from the data, penalized likelihood methods will be
used. Likelihood methods choose the model parameters
that make seeing the observed data most likely; a penalty is
imposed on the changepoint configuration to keep the fitted
model parsimonious (from having too many changepoints).
Our penalized likelihoods have the following form:

22 log[L*(m; t1,…, tm)] 1 P(m; t1,…, tm): (2)

The notation here is as follows:L*(m; t1, … , tm) is the optimal
Gaussian likelihood that can be achieved from a model with m
changepoints that occur at the times t1, … , tm. Here, the data
sample X1, X2, … , XN is regarded as fixed. To determine
L*(m; t1, … , tm), one must estimate all parameters in the mean
function f and the AR(1) model errors assuming that m
changepoints occur at the times t1, … , tm. This procedure will
be discussed further below. The quantity P(m; t1, … , tm) is
the penalty for having a model with m changepoints at the
times t1, … , tm. As more and more changepoints are added
to the model, the overall fit gets better [22 log(L*) gets
smaller]; the penalty, which is positive and increases with the
number of changepoints, prevents an overfitted model (one
with too many changepoints).

Many penalty structures have been proposed in the statistics
and climate literature. These include the Akaike information
criterion (AIC), the Bayesian information criterion (BIC), the
modified Bayesian information criterion (mBIC), and minimum
description lengths (MDL). We will use BIC and MDL here.
These two penalties were judged as “winners” in a recent
changepoint detection comparison in Shi et al. (2022). AIC pen-
alties are not considered here because they often erroneously
estimate an excessive number of changepoints (Shi et al.
2022). The BIC penalty for having m changepoints at the
times t1, … , tm is mlog(N) and is proportional to the num-
ber of changepoints; additional parameters are penalized at
the rate of log(N) per model parameter. Our penalized likeli-
hood objective functions for structural changes are summarized
in Table 1. The individual models will be explained in subsequent

TABLE 1. Penalized likelihoods. The boxed terms are the penalties, with the unboxed terms constituting 22log (L*). Here, N denotes the
length of series, m is the number of changepoints, ti is the time of the ith changepoint, and ŝ2 is the estimated white noise variance.

Criteria Objective function

Penalized likelihoods for the trend shift model with AR(1) errors

BIC N log(ŝ2)1N 1N log(2p)1 (3m1 4)log(N)

MDL N log(ŝ2)1N 1N log(2p)1 2 log(N)1 2 log(m)1 2
∑m11

i51
log(ti 2 ti21)1 2

∑m11

i52
log(ti)

Penalized likelihoods for the trend shift model with white noise errors

BIC N log(ŝ2)1N 1N log(2p)1 (3m1 3)log(N)

MDL N log(ŝ2)1N 1N log(2p)1 log(N)1 2 log(m)1 2
∑m11

i51
log(ti 2 ti21)1 2

∑m11

i52
log(ti)

Penalized likelihoods for the fixed slope mean shift with AR(1) errors

BIC N log(ŝ2)1N 1N log(2p)1 (2m1 4)log(N)

MDL N log(ŝ2)1N 1N log(2p)1 3 log(N)1 2 log(m)1 ∑m11

i51
log(ti 2 ti21)1 2

∑m11

i52
log(ti)

Penalized likelihoods for the Joinpin model with white noise errors

BIC N log(ŝ2)1N 1N log(2p)1 (2m1 1)log(N)

Penalized likelihoods for the long memory model with AR(1) errors. Minus log(N) for white noise errors.

BIC N log(ŝ2)1N 1N log(2p)1 4 log(N)
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sections. The boxed quantities are the model penalties.
When m 5 0, penalties for any changepoint quantities are taken
as zero since changepoint features are absent from the model.

When comparing models via BIC (or any other model selection
criterion), one computes the BIC statistic for all fitted models and
chooses the one with the smallest BIC score. Differences between
BIC values can give a sense of uncertainty between different
model fits. The “posterior model probabilities” of Burnham and
Anderson (2004) can further highlight differences. Elaborating,
we label the compared models as gi (i 5 1, … , R) and let DBICi

denote the difference between the BIC score of model gi and the
model having the smallest BIC score. The posterior model proba-
bilities of Burnham and Anderson (2004) are

pi 5
exp(2DBICi

/
2)∑R

r51

exp(2DBICr

/
2)

: (3)

Then pi is the inferred probability that model gi is the quasi-
true model in the model set under a prior where all R models
are equally likely (prior probabilities are 1/R for each model).
These BIC posterior model probabilities highlight uncertainties
in our model comparisons.

In contrast to the BIC penalty, the MDL penalty is more
complex in form, also accounting for the changepoint location
times t1, … , tm. The MDL penalty depends on the form of f
and is rooted in information theory, quantifying the computer
memory needed to store the model (good fitting models use
minimal space). MDL penalties have previously proven useful
in changepoint detection (Davis et al. 2006; Li and Lund 2012).
Posterior model probabilities are not available for the MDL
information criterion. Other penalties used in the climate litera-
ture for changepoint problems include those in Caussinus and
Mestre (2004).

A drawback of penalized likelihood methods involves compu-
tation time. There are

N 2 1
m

( )
distinct changepoint configurations havingm changepoints. Sum-
ming this over all m shows that there are 2N21 distinct change-
point configurations that need to be searched in an exhaustive
optimization of a penalized likelihood, a daunting task for long
time series. As a solution, genetic algorithms (GAs) will be used
to optimize our penalized likelihoods. GAs are randomized
search algorithms that mimic natural selection processes. In
a genetic algorithm, an initial collection (generation) of change-
point configurations is randomly evolved toward ones with
improved penalized likelihoods. Better fitting models are allowed
priority in passing on their changepoints (genes) to children mod-
els of the next generation. Occasionally, mutations (very different
changepoint configurations) occur; this keeps the GA from con-
verging to local minimums of the penalized likelihood. Ultimately,
the GA converges to a model with a very good penalized likeli-
hood. The natural selection mechanism in GAs makes it unlikely
to visit suboptimal changepoint configurations. While Li and
Lund (2012) illustrate how to devise a GA in climate changepoint

applications, generally available GAs have now become savvy
enough to capably handle our needs. The GA optimizations per-
formed here use the R package GA (Scrucca 2013).

In contrast to GAs, binary segmentation is a greedy algorithm
that often becomes trapped at a local penalized likelihood mini-
mum. Killick et al. (2012) and Maidstone et al. (2017b) produced
two rapid dynamic programming–based multiple changepoint
configuration optimizers that currently cannot handle our needs:
Maidstone et al. (2017b) assumes independent model errors
and Killick et al. (2012) assumes all parameters change at each
changepoint time [including the AR(1) correlation parameter f
and error variance s2]. GAs are the only optimization method
that reasonably handle all models considered in this paper.

4. Models fitted

a. Trend shift models

We start our analysis with models having trends, as a long-
term trend in the CET time series has been documented in previ-
ous studies (Kendon et al. 2021; Franzke 2012; Karoly and Stott
2006). This model posits f(·) to have the piecewise linear form

f (t) 5

m1 1 b1t, 1# t#t1,

m2 1 b2t, t1 1 1# t#t2,

..

.

mm11 1 bm11t, tm 1 1# t#N,

:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4)

More compactly, one can write E[Xt] 5 f(t) 5 mr(t) 1 br(t)t,
where r(t) ∈ {1, 2, … , m 1 1} denotes the regime being used
at time t; for example, r(t)5 1 for 1# t# t1.

The changepoint literature has focused primarily on detecting
mean shifts; fewer studies have been dedicated to detecting trend
shifts. However, Maidstone et al. (2017a) present a dynamic pro-
gramming approach that estimates trend shift configurations us-
ing a penalty based on absolute distances that is neither the
MDL nor BIC. Their {�t} must be white noise (uncorrelated)
with a zero mean and constant variance. See Bai and Perron
(1998), Bai and Perron (2003), and their related R package
“strucchange” by Zeileis et al. (2015) for more details.

The least squares estimators for the ith regime’s parameters
are computed from data in this regime only:

b̂ i 5

∑ti
t5ti2111

(Xt 2 Xi)(t 2 ti)

∑ti
t5ti2111

(t 2 ti)2
, m̂i 5 Xi 2 b̂ it i,

i 5 1, 2,…,m 1 1, (5)

where Xi 5
∑ti

t5ti2111Xt

( )/(ti 2 ti21) and ti 5 (ti 1 ti21 1 1)/2.
While these are not the exact maximum likelihood estimators
in correlated settings, they are typically very close to them (Lee
and Lund 2012). A detailed discussion of least squares versus
maximum likelihood estimator differences for time series is con-
tained in Lee and Lund (2012).

S H I E T A L . 63331 OCTOBER 2022

Unauthenticated | Downloaded 08/29/23 04:22 AM UTC



One next computes the detrended series via

Dt 5 Xt 2 f̂ (t) 5 Xt 2 (m̂r(t) 1 b̂r(t)t): (6)

The AR(1) parameter is then estimated via

f̂ 5

∑N21

t51

DtDt11∑N
t51

D2
t

: (7)

One-step-ahead predictions of the time series are now computed
by

D̂t 5 f̂D̂t21, t$ 2, (8)

with the start-up condition D̂1 5 0. The white noise variance
in the AR(1) model is estimated as

ŝ2 5
1
N

∑N
t51

D̂
2
t : (9)

Plugging m̂k, f̂, and ŝ2 into the Gaussian likelihood [see Li
and Lund (2012) for details] gives a negative Gaussian log-
likelihood of

22 log[L*(m; t1,…, tm)] 5 N log(ŝ2) 1 N 1 N log(2p)︸





︷︷





︸
Constant

:

(10)

The underbraced constant term above does not change
over distinct changepoint configurations and can be neglected
in the changepoint configuration comparisons. The above
equations show how to estimate model parameters and evalu-
ate model likelihoods given the changepoint configuration;
the optimal changepoint configuration is found by a GA
search. The penalized likelihoods obtained with two different
penalties, MDL and BIC, are presented in Table 1 for the var-
ious models used here. Since regression lines are described by
two parameters, all regimes are required to be at least three
years long (so that fits in any single regime are not perfect).

On the full CET series, GA optimizations of the BIC and
MDL penalized likelihoods estimate identical trend shift con-
figurations, both flagging three breaks at the times 1700, 1739,
and 1988 (Table 2). This methodological agreement is conve-
nient, but is not typical in changepoint analyses. Figure 2
graphically depicts our model fit. Cooling occurs during the
first 39 years, followed by an increasing-trend second regime,
with subsequent shifts to two warming trend regimes. The last

TABLE 2. Model fitting results. Here, ŝ2 denotes the estimated variance of the white noise [an asterisk (*) means it is assumed
rather than estimated]. Bolded values are the smallest penalized score. All model residuals have been checked for normality
(Shapiro–Wilk and Kolmogorov–Smirnov tests) and constant variance (Levene’s test).

Model Penalty Flagged changepoints ŝ2 Log-likelihood Penalized score

Trend shifts 1 AR(1) BIC 1700, 1739, 1988 0.290 2288.80 654.19
MDL 1700, 1739, 1988 0.290 2288.80 656.52

Trend shifts 1 WN BIC 1700, 1739, 1988 0.291 2290.02 650.74
MDL 1700, 1739, 1988 0.291 2290.02 653.07

Fixed slope mean shift 1 AR(1) BIC 1988 0.325 2310.11 655.79
MDL 1988 0.325 2310.11 658.93

Joinpin BIC 1973 0.291* 2321.19 654.17
Long-memory 1 AR(1) BIC } 0.579 2316.59 656.75
Long-memory BIC } 0.584 2319.31 655.93

FIG. 2. Estimated CET trend shift structure. BIC and MDL flag the same changepoints in both the CET series
(1700, 1739, 1988; red solid line) and truncated CET (1987; blue dashed line) series when assuming either AR(1) or
white noise errors.
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regime, which starts in 1989, is warming with a trend of 1.18C
per century. When fitting trend shift models to CET series on post-
1772 data only, we find a single changepoint in 1987 (Table 3),
which is consistent with our analysis on the full series.

In both cases, the AR(1) correlation estimate is very small
(f̂ 5 0:058 for the full CET series and f̂ 5 0:073 for the trun-
cated data), and is not significantly different from zero with
standard time series tests (Brockwell and Davis 1991). When
f5 0, anAR(1)model reduces towhite noise. This point is worth
emphasizing: our model fits prefer the trend shift structure over
structures involving autocorrelated errors. This is an important
point since positive autocorrelation and shifts can induce similar
run patterns in series; likelihood methods can decide which fea-
ture (or both) is statistically preferable. Should autocorrelation be
neglected, one risks flagging spurious changepoints. And while in-
dependent model errors are reasonable here, it may not hold in
other applications, especially if monthly or daily data are used.

Other assumptions made on the model errors include nor-
mality and a constant variance in Xt. To assess normality, we
apply a Shapiro–Wilk test to the model residuals. This test
does not reject normality (Tables 2 and 3) at any common lev-
els of statistical significance. To investigate the constant vari-
ance assumption, we apply Levene’s test to the residuals. This
test does not find evidence of a changing variance in the resid-
uals of the trend shifts models fitted to the CET series at any
appreciable levels of statistical significance. Normality and
constant variance assumptions in all future fitted models
(Tables 2 and 3 list these) is investigated}these features
are not rejected in any of the models compared here.

b. A fixed slope mean shift model

In some cases, it may be appropriate to constrain trends to be
identical over all regimes (Wang 2003). This could be the case if
artificial changes are expected. For example, a change of instru-
ment may introduce an artificial shift in a time series, but will not
necessarily alter the long-term trend in different regimes. A model
with a common trend slope in all regimes (Lu and Lund 2007) is

f (t) 5

m1 1 bt, 1# t#t1,

m2 1 bt, t1 1 1# t#t2,

..

.

mm11 1 bt, tm 1 1# t#N,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(11)

where b is the trend slope, which is the same in all regimes.
In compact form, the model can be expressed as

Xt 5 mr(t) 1 bt 1 �t, (12)

where r(t) in {1, 2, … , m 1 1} denotes the regime being used
at time t and {�t} is an AR(1) process.

The ordinary least squares estimators of b and m1, … , mm11

have the explicit form

b̂ 5

∑m11

i51

∑ti
ti2111

(Xt 2 Xi)(t 2 t i)

∑m11

i51

∑ti
t5ti2111

(t 2 ti)2
, m̂i 5 Xi 2 b̂ti,

i 5 1, 2,…,m 1 1, (13)

where Xi and ti are as before. These are again very close to
the maximum likelihood estimators (Lee and Lund 2012).
The BIC and MDL penalties are listed in Table 1.

A GA was used to estimate this configuration, which is plot-
ted against the data in Fig. 3. For the full CET series, both BIC
and MDL flag a single mean shift in 1988, while the single
detected shift moves to 1990 in the truncated series (post
1772). Fewer changepoints are detected in this model than
with the trend shift models of the previous section, but the
time of the single change detected here is consistent with
the last changepoint found in the trend shifts models. Since
the BIC and MDL penalized likelihoods in Tables 2 and 3
are larger for the constant slope model than for the regime-
varying trend slope model, the inference is that regime-
varying slopes are preferable.

c. Joinpin models

There is debate over whether trend models should impose
continuity in E[Xt] at the changepoint times in temperature
series (Rahmstorf et al. 2017). These so-called joinpin models
require E[Xt] 5 f(t) to be continuous in time t. Here, we com-
pare a joinpin model to the trend shifts and fixed slope mean
shift models fitted in the previous sections. Unfortunately, it
is not clear what an appropriate MDL penalty is for this case,

TABLE 3. Model fitting results based on truncated CET series. Here, ŝ2 denotes the estimated variance of the white noise [an
asterisk (*) means it is assumed rather than estimated]. Bolded values are the smallest penalized score. All model residuals have
been checked for normality (Shapiro–Wilk and Kolmogorov–Smirnov tests) and constant variance (Levene’s test).

Model Penalty Flagged changepoints ŝ2 Log-likelihood Penalized score

Trend shifts 1 AR(1) BIC 1987 0.305 2205.44 449.51
MDL 1987 0.305 2205.44 450.70

Trend shifts 1 WN BIC 1987 0.308 2206.13 445.36
MDL 1987 0.308 2206.13 446.55

Fixed slope mean shift 1 AR(1) BIC 1990 0.306 2208.06 449.23
MDL 1990 0.306 2208.06 452.51

Joinpin BIC } 0.308* 2220.72 452.47
Long-memory 1 AR(1) BIC } 0.333 2217.01 450.57
Long-memory BIC } 0.340 2219.41 449.85
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nor does this seem to be an easy matter to rectify; hence, we
proceed with BIC penalties only.

To fit a joinpin model, the package in Maidstone et al. (2017a)
was used. We fit the same model as (4), but with additional con-
straints to force continuity at the changepoint time(s). A simple
way to enforce this continuity is to view the slopes as determined
from E[Xt] at the start and end of each regime. This enforces
continuity within a simple form foregoing additional constraints.
This formulation fits the model

Xt 5 gti
1

gti11
2 gti

ti11 2 ti
(t 2 ti) 1 �t, (14)

where gi is the value of the mean at time i. This formulation is
equivalent to (4) with an additional continuity constraint at
the changepoint locations. Based on Maidstone et al. (2017a),
the BIC for the joinpin model is

BIC 5 N log(ŝ2) 1 N 1 N log(2p) 1 (2m 1 1)log(N), (15)

where

ŝ2 5
1
N

∑m11

i51

∑ti11

t5ti

Xt 2
gti11

2 gti
ti11 2 ti

(t 2 ti)
[ ]2

:

In the formulation of Maidstone et al. (2017a), the white noise
variance is fixed and needs to be estimated. While median abso-
lute deviations could be used for this purpose, we instead use the
estimated error variance of 0.29 (Table 2), taken from the discon-
tinuous model fits and BIC penalties of the last section. This fit
assumes IID errors, which seems plausible given the results of
the previous sections. The fitted model flags a single changepoint
in 1973 in the full CET series and none in the truncated series;
see Tables 2 and 3 and Fig. 4. These fits are stable against
changes from 0.29 in the white noise variance. Compared to our
previous model fits, the joinpin model has a much higher BIC
than the trend shift and fixed slope mean shifts models (Tables 2
and 3). As such, joinpin models do not appear to be competitive.

While a changepoint seems plausible toward the end of the
record due to an increased warming rate, the joinpin fit to the
earliest data is poor, similar to the fixed slope mean shifts
model. This is graphically evident in the Fig. 4 fits, but is also
reflected by the higher BIC scores in Tables 2 and 3. A joinpin
model should be used when a discontinuous mean function is
unlikely or physically implausible. With the CET series, it is
not evident whether the estimated mean function should be
continuous or discontinuous. Elaborating, for series contain-
ing “only a single station,” mean discontinuities are physically
expected. However, when more and more station records are
averaged into a composite record, mean function discontinuities
are reduced, becoming less pronounced with an increasing num-
ber of stations. Should a discontinuous mean function be
deemed possible, a trend shift model provides greater flexibility
since it can simultaneously approximate a joinpin continuous
structure as well as discontinuous shifts (Beaulieu and Killick
2018).

d. Long-memory models

A body of climate literature argues that climate time series
exhibit long memory, where the series’ autocorrelation decays
slowly in lag, often via a power law (Yuan et al. 2015; Blender
and Fraedrich 2003; Franzke 2012). Long-memory correlation
and changepoint features can inject similar run properties
into a climate series, which is appreciated in the statistical and
econometric literatures (Diebold and Inoue 2001; Granger
and Hyung 2004; Mills 2007; Yau and Davis 2012). The daily
CET series may exhibit long memory (Syroka and Toumi
2001; Franzke 2012).

To compare our changepoint models to a long-memory
model, we fit an autoregressive fractionally integrated
moving-average (ARFIMA) model to the CET series. In
particular, ARFIMA models with no moving-average com-
ponent, an integration parameter d with 0 , d , 0.5, and
an autoregressive component of orders zero and one are
considered. The AR(1) long-memory model is character-
ized as
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FIG. 3. The estimated CET trend shift structure for the full (red solid line) and truncated CET (blue dashed line) series
when a constant regime trend slope is imposed. Both BIC and MDL flag a single changepoint in 1988 for the full series
and 1990 for the truncated series.
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Xt 5 (1 2 B)d(1 2 fB)21�t, (16)

where B is the backshift operator applied to Xt.
To fit ARFIMA models, the R package fracdiff (Maechler

2020) was used. A BIC penalty was calculated and is listed in
Table 1. An MDL penalty is not informative since this model
does not have any changepoints. Long-memory model fits to
the full and truncated CET series are described in Tables 2
and 3. The long-memory models have the largest BIC score
among all models compared on the full CET time series. On
the truncated series, they are also among the least plausible,
although joinpin models have higher BIC scores. These re-
sults suggest that changepoints, rather than long memory, are
more plausible in the CET series. For additional evidence
that changepoints are preferred over long-memory features,
we applied the time varying wavelet spectrum methods in
Norwood and Killick (2018) to the CET series. These methods
were used on surface temperatures in Beaulieu et al. (2020) and
shown to discriminate changepoint and long-memory models
well in long series. The results confirm that a changepoint model
is more appropriate than a long-memory model. The fitted model
of autoregressive order zero was also preferred to the fitted
model of order one, reinforcing that correlation aspects in the
CET series are minimal.

e. Model selection uncertainty

Among the six models compared, the trend shift model with
white noise is judged the most plausible, as suggested by both
BIC and MDL scores. The BIC posterior probabilities for all
models fitted above are presented in Table 4. For the full series,
the model probability for the trend shift model with white noise
is 0.64, followed by the joinpin model with probability 0.12 and
the trend shift model with AR(1) errors with probability 0.11.
The three other models all have a posterior probability of 0.05

or less. This highlights the uncertainty in the model selected, al-
though the trend shifts models with AR(1) and white noise errors
are very similar [the autocorrelation estimated in the AR(1)
model is small and both configurations identify the same shifts].
As for the joinpin model, the fit at the start of the record seems
poor.

Moving to the truncated series, the trend shift model with
white noise has a posterior probability of 0.68. The next most
plausible models are the fixed slope mean shift model with
AR(1) errors and the trend shift model with AR(1) errors,
having posterior probabilities of 0.1 and 0.09, respectively
(Table 4). These models are similar in that estimated change-
point times are very close, giving further evidence for a shift
in the late 1980s. However, this suggests that a fixed slope
model should not be entirely discarded. Unlike results for the
full CET series, the joinpin model ranks very low (0.02) on
the truncated CET series. This is not surprising given that no
changepoint is detected under the joinpin model in the trun-
cated series (Fig. 4).

5. Trends versus mean shifts

The simplest changepoint analysis is arguably that of mean
shifts. This is the most common model in the changepoint lit-
erature and has been widely used to analyze climate series.

FIG. 4. Estimated CET joinpin shift structure for full (red solid line) and truncated (blue dashed line) series. BIC flags
one shift in 1973 in the full series and none for the truncated series.

TABLE 4. BIC posterior probabilities for models fitted to the full
and truncated CET series.

Model Full Truncated

Trend shifts 1 AR(1) 0.11 0.08
Trend shifts 1 WN 0.64 0.68
Fixed slope 1 mean shifts 1 AR(1) 0.05 0.10
Joinpin 0.12 0.02
Long-memory 1 AR(1) 0.03 0.05
Long-memory 0.05 0.07
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While this structure is inappropriate for series having trends
(such as the CET analyzed here), we include this model here
for comparative purposes. The mean shifts model posits f(·)
to have the form

f (t) 5
m1, 1# t#t1,
m2, t1 1 1# t#t2,

..

.

mm11, tm 1 1# t#N:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ (17)

The model’s mean structure is compactly written as
f(t) 5 E[Xt] 5 mr(t), where r(t) ∈ {1,2, … , m 1 1} denotes the
regime being used at time t.

Givenm and the changepoint times t1, … , tm, mean parame-
ters are first estimated via segment averages:

m̂ i 5
1

ti 2 ti21

∑ti
t5ti2111

Xt, i 5 1, 2,…, m 1 1: (18)

While sample means are not the exact maximum likelihood
estimators of the mean parameters for correlated series, they
are typically very close and are easy to compute (unlike maxi-
mum likelihood estimators). Next, the regime-wise mean esti-
mated in (18) is subtracted from the series by computing
Dt 5Xt 2 f̂ (t)5Xt 2 m̂r(t). The variance ŝ2 is then estimated
as in (9). We do not fit this model with AR(1) errors based on
the results from the previous sections. The BIC and MDL pe-
nalized likelihoods for this model are

BIC 5 N log(ŝ2) 1 N 1 N log(2p) 1 (3m 1 3)log(N); (19)

MDL 5 N log(ŝ2) 1 N 1 N log(2p) 1 log(N) 1 2 log(m)

1 2
∑m11

i51

log(ti 2 ti21) 1 2
∑m11

i52
log(ti): (20)

We discuss only results on the full series here, but conclu-
sions are consistent (i.e., the same changepoints are detected

after 1772) if we repeat the analysis on the truncated series
only. Fitting this model, seven changepoints are flagged with
both MDL and BIC (Fig. 5).

Both penalties pinpoint 1989 as a changepoint time,which is con-
sistent with results of the previous section. Here, MDL and BIC
both deem the “cold year” in 1740 an outlier, bracketing this time
by two changepoints. Because MDL methods are based on infor-
mation theory (Rissanen 1978) and not large sample statistical
asymptotics, they often flag outliers. Shifts aremore frequent at the
beginning of the record, perhaps suggesting that the data during
these times are less reliable. Evident in the fits is that the last three
regimes act to move the series higher in a “staircase,” which is ex-
pected for a series experiencing a long-termwarming trend (Fig. 5).

The BIC and MDL scores obtained on the full CET series are
648.17 and 656.09, respectively. Should this model be included in
our main comparison, one would still prefer the trend shift model
should the MDL penalty be used to make conclusions. However,
the BIC mean shift score is smaller than the BIC trend shift score
in the previous section, indicating a preference for the mean shift
model. A model containing only mean shifts will flag a sequence
of shifts in an attempt to follow a long-term trend should the data
have a trend and it not be included in the model. If the trend is
not steep, as is the case here, it is especially challenging to distin-
guish between trends and mean shifts. To illustrate this, we con-
ducted a simulation study where 500 synthetic series with the
same trend magnitude and variability (as estimated in the trun-
cated CET time series over 1772–2020) were generated. The
mean shifts plus white noise and trend shifts plus white noise mod-
els were fitted to each series. In only 18% of the synthetic series,
the correct model with a long-term trend was selected by BIC.
Figure 6 presents a histogramof the difference between the two fit-
tedmodels’BIC scores, further demonstrating the bias BIC has for
the erroneous mean shifts model. Should there be any suspicion
about a trend or “staircase feature” in the record, we recom-
mend using techniques that incorporate trends, as done here.

6. Comments, conclusions, and discussion

This study compared and contrasted several common
changepoint model fits for data containing trends, as well as a

FIG. 5. The estimated CET mean shift structure for full (red solid line) and truncated (blue dashed line) series. BIC
and MDL detect the same changepoints for both the CET and truncated CET series assuming white noise errors.
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long-memory autocovariance model, to the CET time series.
To our knowledge, this is the first time a detailed changepoint
analysis has been conducted on this long record. Starting with
a trend shift model, several different changepoint structures
were fitted, illustrating the techniques and salient points of
changepoint analyses.

Tables 2 and 3 present the log-likelihood, BIC, and MDL
scores of all model fits. Depending on the model configura-
tion, we detect either three changepoints (trend shifts models)
or one changepoint (fixed slope mean shifts and joinpin mod-
els) in the full series. This changepoint count discrepancy
traces to the large variations in the series during roughly the
first century of the record.

Most models agree on a change to a rapidly warming re-
gime circa 1988, except for the joinpin model (this is also true
for the truncated series). Among all fitted models, the optimal
one has trend shifts in 1700, 1739, and 1988 (full series), and
one in 1988 (truncated series). Table 5 provides estimates of
the best fitting model’s intercept and slope parameters by re-
gime. While the best fitting model is the trend shifts model,
other models are also plausible (Table 4). Models with higher
posterior probabilities tend to be consistent in their flagged
changepoint times, but highlight that a fixed slope model (as
opposed to the varying slopes in the trend shifts models) may
be plausible. Long-memory models yield the highest BIC
scores, and are less plausible than all other models compared.
The results of the full and truncated CET series are consis-
tent, showing that our post-1772 changepoint inferences are
not overly sensitive to inclusion of the first century of the
series.

Having both BIC and MDL penalties agree on the model
type and changepoint configuration adds robustness to our

conclusions, suggesting that the fitted segmentations are sta-
ble. According to Lavielle (2005), changepoint segmentations
that are stable over a range of penalty values should be pre-
ferred. Overall, models with shifts were deemed preferable to
models having autocorrelated errors.

While our aim is not necessarily directed to the causes of
the detected shifts, we provide some interpretations here.
Shifts flagged during the first century of the record are likely
due to inferior data quality over this early period (Hillebrand
and Proietti 2017). Due to lack of overlapping instrumenta-
tion coverage before 1722, noninstrumental weather diaries
were used to adjust the series (Parker et al. 1992). Observa-
tions were generally collected in unheated rooms until 1760
and adjusted by calibrating indoor and outdoor observations
later (Parker et al. 1992). Even with the most careful adjust-
ments, one cannot guarantee that all biases were removed
from the data. Some authors omit the first century of data al-
together due to this issue (Hillebrand and Proietti 2017).

FIG. 6. Histogram of differences in BIC scores between the trend and mean-shift models. The
correct model is the trend model; however, BIC selects the mean-shift model the majority of the
time.

TABLE 5. Parameter estimates of the best fitting model: Trend
shifts with white noise errors.

Segment Slope (8C yr21)

Full CET
1659–99 20.027
1700–38 0.026
1739–1987 0.002
1988–2020 0.011

Truncated CET
1772–1986 0.002
1987–2020 0.016
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The trend shifts model on the earlier part of the data detects
two changepoints in 1700 and 1739, characterizing a steep cool-
ing trend followed by a warming trend. The mean shifts model
fitted on the earlier part of the data flags multiple changes (1691,
1699, 1727, 1740, 1741), calling for a closer examination of the
earlier part of the record. In data with inhomogeneities, BIC
penalties favor mean shift models over trend shift models, even
if the trend shifts model is truth. A mean shift model character-
izes a warming trend as a staircase of increasing steps. This issue
can be troublesome if the trend in the data is weak, as demon-
strated in our simulation study (see Fig. 6).

The changepoint flagged in 1988 (from multiple models and
in both the full and truncated CET series) is not surprising
given the warming seen on the global level in the 1960/70s in a
range of surface temperature records, as discussed in studies
using both trend shift and joinpin models (Cahill et al. 2015;
Beaulieu and Killick 2018; Rahmstorf et al. 2017; Ruggieri
2013). While the more recent part of the CET series is consid-
ered more reliable and has been adjusted for inhomogenei-
ties, we cannot entirely discard issues in this era either.
Overall, it is possible that a combination of natural and artifi-
cial causes contributes to shifts in the CET series.

To further rule out artificial changes, one could subtract all
15
2

( )
5 105 pairs of series from one another and examine these

differences for changepoints. Then, one can distinguish artificially
caused changepoints from those due to natural climate change
and variability. See Menne and Williams (2009) for more details
on this procedure. Artificial changes can then be corrected before
long-term trends are analyzed. Changes that are not considered
artificial can be further investigated through an attribution study
(Hartmann et al. 2013).

Residual analyses were conducted to ensure that the underly-
ing assumptions of the model were met. With the CET series,
residuals of the trend shift model fit were judged to be uncorre-
lated (white noise). However, climate time series often exhibit
autocorrelation that should be taken into account. We stress
the importance of verifying the underlying assumptions in any
changepoint model. Indeed, neglecting positive autocorrelation
raises the risk of detecting spurious shifts. Also, the series’ auto-
correlation may be more complex than an AR(1) process and
may itself contain shifts (Beaulieu et al. 2012; Beaulieu and
Killick 2018). Some climate series may also contain long-
memory autocorrelations (Vyushin et al. 2012). An additional
challenge lies with the ambiguity between long-memory and
changepoint models: both features can produce series with similar
run structures. Because of this, a long-memory model was in-
cluded as part of our comparison. We found that the CET time
series is best represented by a multiple trend shift changepoint
structure and not a long-memory model. Such a comparison is
not possible for all climate series since lengthy records are re-
quired to analyze long-memory series (Beaulieu et al. 2020). The
CET time series, which is the longest publicly available surface
temperature series, enables this comparison. Other assumptions
that were made include constant variance temperatures and nor-
mally distributed observations. Both assumptions cannot be re-
jected in any models fitted (Tables 2 and 3).

Model selection based on criteria does not guarantee that the
selected model is “truth.” All models are an approximation of
reality, and multiple models can plausibly represent the data. To
quantify this, one can calculate posterior model probabilities
with BIC that each fitted model is the “quasi-truth.” This
assumes that all models included in the comparison have the
same prior weight, which may not be reasonable. One must also
note that this measure is relative to the models included in the
comparison, and does not reflect the uncertainty that the “true”
model may not be part of the model set. Similarly, uncertainty in
the total number of changepoints and their individual occurrence
times is a difficult statistics problem. Bayesian methods, which
were not considered here, can in principle place uncertainty mar-
gins on the number of changepoints and their locations. When
several distinct models have similar penalized likelihood scores,
inferences about the number of changepoints are likely to be less
reliable. Recent statistics work is now studying this issue (Li et al.
2019; Cappello et al. 2021).

Ultimately the choice of “best model” should be arrived at
from a judgment made by the researcher(s) based on objective
statistical metrics, such as presented in this work, combined with
understanding of the data recording practices and physics of the
natural system.
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