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Abstract

Changepoint models are increasingly used to represent changes in the rate of
warming in surface temperature records. On the opposite hand, a large body
of literature has suggested long-memory processes to characterize long-term
behavior in surface temperatures. While these two model representations pro-
vide different insights into the underlying mechanisms, they share similar spec-
trum properties that create “ambiguity” and challenge distinguishing between
the two classes of models. This study aims to compare the two representations
to explain temporal changes and variability in surface temperatures. To address
this question, we extend a recently developed time-varying spectral procedure
and assess its accuracy through a synthetic series mimicking observed global
monthly surface temperatures. We vary the length of the synthetic series to
determine the number of observations needed to be able to accurately distin-
guish between changepoints and long-memory models. We apply the approach
to two gridded surface temperature data sets. Our findings unveil regions in the
oceans where long-memory is prevalent. These results imply that the presence
of long-memory in monthly sea surface temperatures may impact the signifi-
cance of trends, and special attention should be given to the choice of model
representing memory (short versus long) when assessing long-term changes.
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1 INTRODUCTION

Quantifying changes in surface temperature records is challenging due to the presence of mixed signals coming from
radiative forcings superposed to internal variability. Statistical analyses to characterize changes in such time series require
assumptions for both the signal component and the internal variability. The signal has been commonly characterized as
a linear trend (Hartmann et al., 2013; Trenberth et al., 2007), although an increasing number of studies have been using
piecewise linear trend models with changepoints to describe and quantify the rate of warming (Beaulieu & Killick, 2018;
Cahill, Rahmstorf, & Parnell, 2015; Gallagher, Lund, & Robbins, 2013; Karl, Knight, & Baker, 2000; Rahmstorf, Foster, &
Cahill, 2017; Ruggieri, 2012; Seidel & Lanzante, 2004) or models with mean changepoints (Jandhyala, Liu, Fotopoulos,
& MacNeill, 2014; Khapalova, Jandhyala, Fotopoulos, & Overland, 2018). The model chosen to represent the temporal
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change is likely to influence the estimates of the rate of change, their uncertainty, as well as the interpretation of the
detected changes.

Internal variability is often characterized as “memory” or “red noise,” in which the ocean and other slow components
of the climate system (e.g., ice sheets) respond slowly to random atmospheric forcing, producing variability at a longer
time scale than the white noise (WN) atmospheric weather (Hasselmann, 1976). The fluctuations caused by the inter-
nal memory can be large enough to create periods of apparent slowdowns and surges and clustering of extreme events
(Bunde, Eichner, Kantelhardt, & Havlin, 2005), thus masking or exacerbating the long-term trend with potential risks for
ecosystems (Mustin, Dytham, Benton, Travis, & Watson, 2013).

In statistical terms, the memory is often represented by a first-order autocorrelation process (AR(1); Mann & Lees, 1996),
in which the persistence decays exponentially as a function of the AR(1) parameter, hence representing short-term mem-
ory. This assumption has been commonly used in studies quantifying changes in surface temperature (Santer et al., 2008)
and adopted to quantify trends in the last Intergovernmental Panel on Climate Change (Hartmann et al., 2013). Some
studies even make the simpler assumption of independence (i.e., no memory) in trend detection, but this is well known
to increase the risk of spurious detection if some memory is present (von Storch, 1999; von Storch & Zwiers, 1999).
Similarly, the presence of memory increases the risk of spurious detection when applying changepoint models (Tang &
MacNeill, 1989, 1993). Another assumption for the internal memory in surface temperatures is that it persists over a
longer term such that the autocorrelation function decays as a power law and does not reach zero (Yuan et al., 2015).
Long-term memory has been suggested mainly for long climate reconstructions, but also in surface temperature global
and gridded observational data sets and model simulations (Blender & Fraedrich, 2003; Efstathiou, Tzanis, Cracknell,
& Varotsos, 2011; Fraedrich & Blender, 2003; Huybers & Curry, 2006; Koscielny-Bunde et al., 1998; Lennartz & Bunde,
2009; Rybski, Bunde, Havlin, & von Storch, 2006; Rypdal, Østvand, & Rypdal, 2013; Varotsos & Kirk-Davidoff, 2006;
Yuan, Fu, & Liu, 2013).

Research in the statistical and econometric literature has suggested that long-memory processes and changepoint mod-
els may be easily confused with one another because both models share some similar properties within the spectrum
(Diebold & Inoue, 2001; Granger & Hyung, 2004; Mills, 2007; Smith, 2005; Yau & Davis, 2012). Both representations
have been suggested for surface temperatures, and distinguishing between the two has important implications (Ruggieri,
2012) for mechanistic understanding and predictability (Mills, 2007; Smith, 2005). Yau and Davis (2012) proposed a like-
lihood ratio test for discriminating between the two representations, with a changepoint model as the null hypothesis
and long-memory as the alternative hypothesis. Here, we instead use a classifying approach (Norwood & Killick, 2018),
which does not necessitate setting any model as the null and alternative hypothesis. More specifically, we compare two
representations of signals and memory in surface temperatures that have been suggested in the literature: (a) piecewise
trend with no or short-memory as opposed to (b) long-memory with or without a superposed long-term linear trend.
We first demonstrate the skill of the method on a synthetic series mimicking global surface temperatures with different
lengths and then determine how many months of observations are necessary to distinguish the true underlying mecha-
nisms described by the two categories of models. We also apply the method to two gridded surface temperature data sets
to unveil the spatial signatures of the two representations.

2 DATA

We use two monthly gridded surface temperature data sets. The Met Office Hadley Centre and Climatic Research Unit
surface temperature (HadCRUT4) data set (version HadCRUT.4.5.0.0; available at http://www.metoffice.gov.uk/hadobs/
hadcrut4/data/current/download.html; Morice, Kennedy, Rayner, & Jones, 2012) combines sea surface temperatures
(SST) from the Hadley Centre SST data set version 3 (HadSST3; Kennedy, Rayner, Smith, Parker, & Saunby, 2011a,
2011b) and land surface temperatures from the Climatic Research Unit version 4 (Jones et al., 2012). We also use the
Merged Land–Ocean Surface Temperature Analysis (MLOST) from the National Oceanic and Atmospheric Administra-
tion National Centers for Environmental Information (Smith, Reynolds, Peterson, & Lawrimore, 2008; Vose et al., 2012)
available at https://www.ncdc.noaa.gov/cag/time-series/global, which combines land air temperatures from the Global
Historical Climatology Network version 3.3.0 (GHCNv3.3.0) and the Extended Reconstructed Sea Surface Temperature
version 4 (ERSST.v4; Huang et al., 2015; Liu et al., 2015).

In both data sets, for each grid cell, we retain the longest stretch of data that does not contain missing values. If the
length of this stretch of data is below 600 observations (50 years), then we remove that grid point from consideration.
This cutoff was chosen, as this is where we saw a tail-off in the accuracy of the classification method for the long-memory
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FIGURE 1 Number of contiguous observations used in each grid cell for two surface temperature data sets: (a) Merged Land–Ocean
Surface Temperature Analysis (MLOST) and (b) Hadley Centre and Climatic Research Unit surface temperature version HadCRUT.4.5.0.0
(HadCRUT4). Grids with an insufficient number of observations (<600) to perform the classification are left blank

model after some preliminary analyses (see the Simulation results section). Figure 1 presents the number of observations
used in the analysis for each grid cell. The monthly means are deseasonalized to remove a fixed seasonal cycle, that is, we
remove the January average from all January values, and so on. The method described below is applied independently to
each grid cell to unveil spatial signatures.

3 METHOD

3.1 Models
We aim to compare two categories of models that have been used to characterize signal and memory in surface temper-
atures: (a) trend changepoints with short-memory and (b) trend with long-memory. Since these characteristics may vary
in different regions, we use a series of models to generalize how the signal and memory can behave. For the first category,
we select the best from the following models: mean changepoints and trend changepoints with no or short-term mem-
ory, as in Beaulieu and Killick (2018). Here, the short-memory is represented by an AR(1) process Xt = 𝜙Xt− 1 + 𝜖t, where
𝜙 ∈ (−1,1) is the first lag autocorrelation parameter and 𝜖t are WN errors with variance 𝜎2. This process is considered
short-memory given that its autocovariance decays exponentially with the time lag 𝜏, such that 𝛾(𝜏) = 𝜙𝜏 (Brockwell &
Davis, 2002). In the absence of memory (𝜙 = 0), the process simplifies to WN. The models considered to characterize the
surface temperature time series (Yt) can be expressed as follows.

1. Multiple changepoints in the mean with WN:

Yt =

⎧⎪⎪⎨⎪⎪⎩

𝜇1 + 𝜖t, t ≤ c1

𝜇2 + 𝜖t, c1 < t ≤ c2

⋮ ⋮

𝜇m + 𝜖t, cm−1 < t ≤ n,

(1)
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where 𝜇1,… ,𝜇m represent the mean of each of the m-segments, c1,… ,cm − 1 represent the timing of the changepoints
between segments, 𝜖t are the WN errors with variances 𝜎2

1 , … , 𝜎2
m depending on the segment, and n is the length of the

time series.
2. Multiple changepoints in the mean with AR(1):

Yt =

⎧⎪⎪⎨⎪⎪⎩

𝜇1 + 𝜙1𝑦t−1 + 𝜖t, t ≤ c1

𝜇2 + 𝜙2𝑦t−1 + 𝜖t, c1 < t ≤ c2

⋮ ⋮

𝜇m + 𝜙m𝑦t−1 + 𝜖t, cm−1 < t ≤ n,

(2)

where 𝜙1,… ,𝜙m represent the first-order autocorrelation in each segment.
3. Multiple changepoints in the trend with WN:

Yt =

⎧⎪⎪⎨⎪⎪⎩

𝜆1 + 𝛽1t + 𝜖t, t ≤ c1

𝜆2 + 𝛽2t + 𝜖t, c1 < t ≤ c2

⋮ ⋮

𝜆m + 𝛽mt + 𝜖t, cm−1 < t ≤ n,

(3)

where 𝜆1,… ,𝜆m and 𝛽1,… , 𝛽m represent the intercept and trend in each segment.
4. Multiple changepoints in the trend with AR(1):

Yt =

⎧⎪⎪⎨⎪⎪⎩

𝜆1 + 𝛽1t + 𝜙1𝑦t−1 + 𝜖t, t ≤ c1

𝜆2 + 𝛽2t + 𝜙2𝑦t−1 + 𝜖t, c1 < t ≤ c2

⋮ ⋮

𝜆m + 𝛽mt + 𝜙m𝑦t−1 + 𝜖t, cm−1 < t ≤ n.

(4)

For all the models listed above, there may be no changepoints detected such that there is only one segment in the time
series (m = 1).

We use the EnvCpt R package (Killick, Beaulieu, Taylor, & Hullait, 2018) to automatically fit the best model among
the four models listed above. The methodology considers all possible parameters and number of changes across the four
models. The number and location of changepoints are determined using the pruned exact linear time algorithm (Killick,
Fearnhead, & Eckley, 2012), which is used in combination with the modified Bayesian information criterion (Zhang &
Siegmund, 2007) as the penalty function to select the optimal number of changepoints. The best model among the four
is then selected as the one with the smallest Bayesian information criterion, as shown to be performing well in Beaulieu
and Killick (2018). The reader can refer to the work of Beaulieu and Killick (2018) for the full details of the methodology.

For the second category of models with long-memory, we superpose either a constant mean or a linear trend to the
long-memory process, which we fit using autoregressive fractionally integrated moving average (ARFIMA) models. In its
general form, an ARFIMA model can be expressed as(

1 −
∑p

i=1
𝜙iBi

)
(1 − B)dYt =

(
1 +

∑q

i=1
𝜃iBi

)
𝜖t, (5)

where 𝜖t are the WN errors with variance 𝜎2 and B is the backward operator such that BYt = Yt−1 and B𝜖t = ϵt−1. The
ARFIMA model is characterized by the autoregressive (AR) parameters𝝓∈Rp and the moving average parameter 𝜽∈Rq,
and the integration (I) parameter is allowed to assume any real value (d ∈R). The restriction of d to take only integer val-
ues would simplify to an autoregressive integrated moving average model. For a stationary process, d varies between −0.5
and 0.5, with d = 0 indicating no memory, −0.5 < d < 0 indicating intermediate memory (antipersistent), and 0 < d < 0.5
indicating long-memory. In particular, d = 0.5 is a discrete-time 1/f process from Mandelbrot (1967). The ARFIMA pro-
cess with 0 < d < 0.5 has long-memory because past behavior continues to influence the process for a long time such
that the autocovariance decays algebraically as the time lag increases, in contrast to the faster exponentially decaying
autocorrelation of a stationary short-memory process (e.g., AR; Granger & Ding, 1996; Granger & Joyeux, 1980; Hosking,
1981). More specifically, the autocovariance of an ARFIMA (0,d,0) is given by 𝛾(𝜏) = |𝜏|2d−1 with a decreasing frequency
according to a power law. This is often expressed in terms of the Hurst exponent H (Hurst, 1951), which relates to d as
H = d + 0.5, and H ∈ (0.5,1).
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BEAULIEU ET AL. 5 of 14

Here, we restrict the order of the AR process to a maximum of 1 and the order of the moving average process to 0 to
match the changepoint models (Equations 1–4). We fit two long-memory models: one where the long-memory model
fluctuates around a constant mean and another where long-memory is superposed to a long-term linear trend, that is,

Yt = 𝜇 + ARFIMA (𝜙, d, 0) , t ≤ n (6)

Yt = 𝜆 + 𝛽𝑡 + ARFIMA (𝜙, d, 0) , t ≤ n, (7)
where 𝜇 represents a constant mean, and 𝜆 and 𝛽 represent the intercept and linear trend, respectively. For the
long-memory models, we use the arfima R package (Veenstra, 2013). We fit the flat mean (6) and linear trend (7) models
separately and choose the model with the smallest Bayesian information criterion value as the best long-memory model.

3.2 Classification
Once the best trend (a) changepoints with short-memory and (b) long-memory models have been identified, we use a
classification method to select which one is the most appropriate based on examining their time-series spectrum. As
changepoint and long-memory models exhibit similar spectral behavior in a standard stationary spectrum, we use the
time-varying wavelet spectrum to distinguish them (Norwood & Killick, 2018). Heuristically, a time-varying spectrum is
simply the calculation of the traditional spectrum at each individual time point, localized to a small area of information
around it. That is, if we take a specific time point, we can plot the spectrum across frequency and attain a traditional
spectrum but for data localized around that specific time point. To avoid the subjective choice of window size for the local-
ization, as well as other reasons, we use a time-varying spectrum based on the locally stationary wavelet process (Nason,
von Sachs, & Kroisandt, 2000) defined as

Yt,N =
∑∞

𝑗=1

∑
k
W𝑗

(
k
n

)
𝜓𝑗,k−t𝜉𝑗,k, (8)

where j ∈ 1, 2,… and k ∈ Z are the scale and location parameters; 𝜓𝑗 = (𝜓𝑗,0, … , 𝜓𝑗,L𝑗−1) are discrete, compactly sup-
ported, real-valued, nondecimated Daubechies wavelet vectors of support length Lj = (2 j − 1) (Nh − 1) with a Daubechies
wavelet filter of size Nh; and 𝜉j, k are orthonormal, zero-mean, identically distributed random variables (Daubechies, 1992).
The amplitudes W𝑗

(
k
n

)
are time-varying, real-valued, piecewise constant functions that have an unknown amount of

jumps. The time-varying spectrum is the square of the amplitudes, that is,

S𝑗
(

k
N

)
=
|||||W𝑗

(
k
N

)|||||
2

, (9)

and changes over both scale (frequency band) j and location (time) k. The two dimensions of the spectrum (scale and loca-
tion) allow distinguishing between a changepoint model and a long-memory model. As the long-memory model we fit is
stationary, the time-varying spectrum is constant over time. In contrast, the time-varying spectrum of a model contain-
ing changepoints will be piecewise constant. Figure 2 presents examples of a time series simulated from a changepoint
model and a long-memory model along with their respective standard stationary spectrum and time-varying spectrum.
The ambiguity between their standard stationary spectra is obvious, and notable differences between the time-varying
spectra of the two classes of models are also highlighted (Figure 2).

To distinguish the two classes of models (long-memory versus changepoints), we use a classifier based on these dif-
ferences, as proposed in Norwood and Killick (2018). This approach involves comparing a data set to “known” groups
through a distance metric. Since the truth is unknown, we simulate 1,000 Monte Carlo replications of each of the best
models in each category to serve as training data to build a classifier.

For each group, changepoint and long-memory, the time-varying spectrum of each of the M= 1,000 simulated replica-
tions is calculated as follows:

Sgm =
{

Sgk,m
}

k=1,2,… ,n∗J
. (10)

Here, S is the vector containing the time-varying spectrum, g is the group, m is the simulation index from 1 to 1,000, k is
the index of the time-varying spectrum over n time points, and J are the frequency bands.

To get a representation of the time-varying spectral behavior of each group, we take the average at each time-frequency
point for each of the M= 1,000 replications, as follows:

S̄g =
{ 1

M
∑M

m=1
Sgk,m

}
k=1,2,… ,n∗J

. (11)
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6 of 14 BEAULIEU ET AL.

FIGURE 2 Examples of time series generated from (a) a trend changepoint model with AR(1) errors and (b) long-memory, their respective
average spectrum in (c) and (d), and the corresponding time-varying spectrum in (e) and (f)
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TABLE 1 List of parameters used to simulate the sets of synthetic series

Variable Scenario Model Parameters
HadCRUT4 A Trend cpt + AR(1) 𝜆1 = 0.333, 𝜆2 = 2.669, 𝜆3 = −8.256,
GMST 𝜆4 = −5.962, 𝛽1 = −0.000265, 𝛽2 =
(N = 2016) −0.00144, 𝛽3 = 0.00426, 𝛽4 = 0.00302,

𝜑1 = 0.306, 𝜑2 = 0.753, 𝜑3 = 0.521, 𝜑4 =
0.776, c1 = 329(0.163N), c2= 806(0.4N),
c3 = 1260(0.625N), m = 4, 𝜎2

1 = 0.0302,
𝜎2

2 = 0.0123, 𝜎2
3 = 0.0130, 𝜎2

4 = 0.00907
B Trend + LM 𝜆 = −10.405, 𝛽 = 0.00541, 𝜎 = 0.0144, d = 0.485

Note. HadCRUT4 = Hadley Centre and Climatic Research Unit surface temperature version HadCRUT.4.5.0.0;
Trend cpt + AR(1) = trend changepoint model with AR(1) errors; GMST = global monthly surface temperature;
Trend + LM = trend with long-memory model.

Denoting the spectrum of the original data by S0, based on these average spectra for each group, we calculate the
variance-corrected distance metric across all time-frequency points from Norwood and Killick (2018), that is,

Dg = M
M + 1

∑n∗J

k=1

(
S0

k − S̄gk
)2

∑M
m=1

(
Sgk,m − S̄gk

)2 . (12)

This distance metric allows for different variances in each group. Further details on the locally stationary wavelet process
and the time-varying spectrum classifier can be found in Norwood and Killick (2018).

3.3 Simulation of synthetic series
Synthetic series were generated to mimic the behavior seen in the HadCRUT4 global monthly surface temperature
(GMST) time series for the two categories of models and evaluate whether the proposed approach would be able to dis-
tinguish them. In particular, we fit the best long-memory and changepoint models to the HadCRUT4 GMST, without
assuming that one is better than the other, and simulate random series from the fitted models. To evaluate the effect of
the record length on the performance, we simulate varying record lengths, from a minimum of 50 years (N = 600 months)
to the length of the whole record of 168 years (N = 2016 months).

The models used for simulation are given as follows, where the specific parameters used to simulate the synthetic series
are presented in Table 1:

A) trend changepoint model with AR(1) errors (Trend cpt + AR(1));
B) trend with long-memory model (Trend + LM).

To investigate how the length of the series affects the classification, we take the two models and create 1,000 monthly
synthetic series for each of N = 600, 700, 800, 1,000, 1,200, 1,400, 1,600, 1,800, 2,016 (corresponding to samples varying
between 50 and 168 years). For the changepoint series, we fix the location of the changepoints relative to the length of the
series, as detailed in Table 1. For the Trend + LM scenario, we carry out an additional simulation, in which we simulate
the series with the same parameters (Table 1), except that we vary the long-memory strength (from d = 0.1 to d = 0.499).

4 RESULTS

4.1 Simulation results
We apply the classification approach detailed above to the two sets of synthetic series generated with varying lengths N.
Figure 3 presents the classification hit rates for the two simulation cases. The results demonstrate that, overall, it is easier
to identify models with changepoints than models with long-memory. We show that with 50 years of observations, we
can successfully classify the changepoint model (Trend cpt + AR(1)) with hit rates >99%, whereas the hit rate for the
long-memory model (Trend + LM) is ∼70% (Figure 3a). As the series length increases, the classification hit rate improves
for the long-memory model. With about 100 years of observations, the classifier's skill improves, reaching 95%. With
150 years of observations, the approach correctly classifies the Trend + LM model with a hit rate>99%. Note that the level
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FIGURE 3 Results of the simulation study for the two scenarios and for time series with varying number of years (N). (a) For each
scenario, the percentage of series classified correctly as either trend changepoint and short-memory (Cpt) or trend and long-memory (LM) is
presented taken over 1,000 replications. (b) For the scenario with long-memory, the experiment is repeated with varying strengths for the
long-memory parameter from low (d = 0.1) to high (d = 0.499)

of long-memory in the Trend + LM case described above is high (d = 0.485). To evaluate the effect of long-memory on
the classifier's ability, we also run simulations with the Trend + LM model with a varying degree of long-memory (from
d = 0.1 to d = 0.499; Figure 3b). For a very strong long-memory (d = 0.499), the classifier reaches a 60% hit rate at best
with 168 years of data. For a weaker long-memory (d ≤ 0.4), the classifier produces hit rates >80% with 50 years of data
and reaches >97% with 168 years of data.

To demonstrate the importance of distinguishing between the two models for mechanistic understanding, we present
how “wrong” the results get when fitting the changepoint models to the synthetic series with long-memory (Trend + LM).
Table 2 presents the percentage of series that detected at least one changepoint when the true model is Trend + LM. We
can see that as the sample size increases, the percentage of simulations identifying erroneous changes increases. This is
due to the fact that data from long-memory processes are prone to periods of increasing or decreasing trends, and thus,
the longer the simulated long-memory process, the more likely these behaviors will manifest.

TABLE 2 Percentage of synthetic series that detect at least one changepoint over 1,000
replications for different sample sizes (N) when the truth is a long-memory model

Scenario Number of observations expressed in months (years)
600 700 800 1,000 1,200 1,400 1,600 1,800 2,016

(50y) (58y) (67y) (83y) (100y) (117y) (133y) (150y) (168y)
Trend + LM 70.9 74.4 84.2 91.2 94.7 95.2 97.2 97.9 99.6

Note. Trend + LM = trend with long-memory model.
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FIGURE 4 Comparison between changepoint models with short-term memory versus trend with long-term memory for two surface
temperature data sets: (a) Merged Land–Ocean Surface Temperature Analysis (MLOST) and (b) Hadley Centre and Climatic Research Unit
surface temperature version HadCRUT.4.5.0.0 (HadCRUT4). The colorbar represents the variance-corrected distance metric presented in
Equation (12), which represents the strength of evidence for the chosen model. Negative values indicate evidence for a changepoint model
(Cpt), whereas positive values indicate long-memory (LM). Grids with insufficient data to perform the classification are left blank

4.2 GMST gridded data sets
The classification approach detailed above was applied to the HadCRUT4 and MLOST gridded data sets. The results are
presented in Figure 4 as a heat map. Results reveal consistent patterns between the two data sets, although more MLOST
grid cells were used in the analysis (Figure 1). Overall, the surface temperatures over land are better characterized as
changepoint models with short-memory, whereas long-memory arises in regions of the ocean. For the cases where a
changepoint model with short-memory is preferred, the number of changepoints is presented in Figure 5. In most cases,
one changepoint is present in the time series, but some regions over land exhibit more than one changepoint. It must
be noted that for the cases where no changepoints are detected, our classification approach is considered inconclusive
as both series are stationary. These inconclusive areas are mostly located over the ocean around long-memory hot spots,
suggesting that the transition zones are especially difficult to classify. Figure 6 presents the memory strength (fractionally
differenced parameter d from the ARFIMA model) in those long-memory hot spots for both data sets. It averages to 0.29
and 0.28 for the HadCRUT4 and MLOST data sets, respectively. This is lower than the long-memory estimated from the
global HadCRUT4 time series used to simulate synthetic series (d = 0.485; Table 1). However, since our approach suggests
that a changepoint model provides a better fit than a long-memory model at the global level (i.e., the variance-corrected
distance metric is −1), we hypothesize that the long-memory estimate may be spuriously inflated in the global record.

5 DISCUSSION

We propose an approach to distinguish between two categories of models commonly used to characterize signal and mem-
ory in surface temperatures: (a) short-memory superposed by a piecewise trend (Beaulieu & Killick, 2018; Cahill et al.,
2015; Karl et al., 2000; Rahmstorf et al., 2017; Ruggieri, 2012; Seidel & Lanzante, 2004) or (b) long-memory that may
be superposed by a long-term trend (Franzke, 2012; Ludescher, Bunde, & Schellnhuber, 2017). The ambiguity between
changepoint and long-memory models has been widely discussed in the statistical and econometric literature (Diebold &
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10 of 14 BEAULIEU ET AL.

FIGURE 5 Number of changepoints detected for grid cells where a changepoint model with the short-term memory model is more likely
than a trend with long-term memory for two surface temperature data sets: (a) Merged Land–Ocean Surface Temperature Analysis (MLOST)
and (b) Hadley Centre and Climatic Research Unit surface temperature version HadCRUT.4.5.0.0 (HadCRUT4). The gray areas indicate grid
cells where a long-memory model was preferred. Grids with insufficient data to perform the classification are left blank

Inoue, 2001; Granger & Hyung, 2004; Mills, 2007; Smith, 2005; Yau & Davis, 2012). In the climate literature, a systematic
comparison between the two classes of models on temperature reconstruction data sets showed preference for change-
point models (Rea, Reale, & Brown, 2011), but to our knowledge, there has not been a formal comparison on surface
temperature observations. The novelty of the present analysis is to formally and automatically compare both representa-
tions on observational records across hundreds of gridded locations. Our results show that the best combination of signal
and noise has a strong spatial signature, where changepoint and short-term memory models are mostly appropriate over
the land, whereas long-term memory is more prevalent in the oceans. Rypdal et al. (2013) suggest that the long-memory
in the oceans is associated with the thermal inertia of the oceans. The small effective thermal inertia of the land sur-
face compared to the oceans leads to shorter-memory over the continents (Manabe & Stouffer, 1996; Pelletier, 1997). Our
results further highlight hot spots where long-memory arises in SST in the extratropical North Pacific and North Atlantic,
as well as in the tropical Pacific. These regions were previously shown to exhibit higher persistence (Vyushin, Kushner,
& Zwiers, 2012). In oceanic regions away from intense currents and thermal fronts, the persistence is typically explained
by a simple model where the ocean slowly responds to atmospheric weather and creates short-memory (Frankignoul &
Hasselmann, 1977; Hasselmann, 1976). The regions highlighted here are characterized by important currents, such as the
Gulf Stream in the North Atlantic for example, and likely need additional complexity to explain the memory structure
observed here. This question should be investigated using climate models providing better spatial coverage. We leave this
aspect to future investigation.

The classification used here is inconclusive in some areas (i.e., no changepoints detected; see Figure 5) because
the approach is designed to distinguish the shapes of time-varying spectra, where changepoints will show a
piecewise-constant time-varying spectrum as opposed to a constant spectrum over time for long-memory. With-
out changepoints, the problem reduces to a comparison between short-memory versus long-memory models, and a
time-varying spectrum is not appropriate to answer this question. In that case, it is instead recommended to use a test for
distinguishing between short-memory and long-memory (Giraitis, Kokoszka, Leipus, & Teyssière, 2003). For surface tem-
perature data, a comparison between short-term and long-term memory on reanalysis data sets and model simulations
suggest that climate persistence could lie in between and that the data do not suggest that one representation is superior
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BEAULIEU ET AL. 11 of 14

FIGURE 6 Strength of the memory (given by parameter d) for grid cells where a trend with long-memory is more likely than a
changepoint model with short-term memory for two surface temperature data sets: (a) Merged Land–Ocean Surface Temperature Analysis
(MLOST) and (b) Hadley Centre and Climatic Research Unit surface temperature version HadCRUT.4.5.0.0 (HadCRUT4). The gray areas
indicate grid cells where a changepoint model is more likely. Grids with insufficient data to perform the classification are left blank

(Vyushin et al., 2012). However, it must be noted that a significant portion of the inconclusive areas also coincides with
grid cells with limited data availability (∼50 years/600 months without missing values; Figure 1), which suggests that the
areas of long-memory in the oceans could potentially be underestimated. Hence, classifying the two categories of mod-
els is more difficult with shorter time series as opposed to the full record period (168 years; Figure 3), and we find that
this is emphasized when the “true” underlying model has long-memory. When the “true” model has short-memory and
changepoints, fewer observations are required to perform a successful classification. This result is consistent with the sim-
ulation study in Norwood and Killick (2018), which demonstrates that this approach provides perfect classification in the
case of a true changepoint model and increasingly correct classifications, as n grows, in the case of a true long-memory
model. The simulations in Norwood and Killick (2018) were conducted in a constant mean scenario, and so, we assess
the performance of the method for linear trends here. At a lower time resolution such as annual, long-memory may not
be detectable due to the reduction in the number of observations and less likely to impact the significance of trends and
changepoints. However, this is purely speculative, and the time resolution aspect will be left for future investigation.

The results presented here may be affected by the use of discontinuous piecewise trend models to characterize the
behavior of surface temperatures. Some studies have argued that global temperature piecewise trends should be contin-
uous, where the lines of the different segments are forced to meet at the changepoints (Rahmstorf et al., 2017). Here, we
do not impose the continuity constraint to keep more flexibility, as some regions may exhibit discontinuities (Beaulieu
& Killick, 2018). Furthermore, we have previously shown that changes detected under discontinuous models may give
quasi-continuous segments, such that although the continuity constraint is not imposed, the discontinuity is small and
may only slightly impact the number and timing of the changepoints. Similarly, the autocorrelation and variances are
allowed to vary between segments under our changepoint models, as opposed to simpler models that impose a global auto-
correlation and variance and allow changepoints in the trend only. This choice is based on previous findings, where five
GMST data sets were shown to be better represented by a trend changepoint model with AR(1), with an intensification in
warming in the 1960s/1970s accompanied by a reduction of autocorrelation (Beaulieu & Killick, 2018). Forcing a global
autocorrelation when it actually varies with time could lead to spurious changepoints; thus, we allow the autocorrelation
parameters to change in each segment. If, in some regions, the autocorrelation parameters are constant through the time

 1099095x, 2020, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2568 by U

niv O
f C

alifornia Santa C
ruz - U

C
SC

, W
iley O

nline L
ibrary on [23/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12 of 14 BEAULIEU ET AL.

series, then their estimates will be very similar between segments. Studying the sensitivity of our results to a continuity
constraint and constant autocorrelation is out of the scope of the present study and is the focus of ongoing work.

Based on our results, it is recommended to verify the presence of long-memory when testing for long-term trends and
changepoints in SST, especially over the regions identified here (Figure 4). Hence, assuming a short-memory model such
as routinely done in the Intergovernmental Panel on Climate Change (Hartmann et al., 2013) when testing for trends in the
presence of long-memory may impact their significance (Bloomfield & Nychka, 1992; Franzke, 2012; Lennartz & Bunde,
2009; Ludescher et al., 2017). Similarly, piecewise trends may not hold in the presence of long-memory as demonstrated
here. Separating signal and memory in surface temperatures is especially important as there may be implications for the
attribution of the signal detected (Imbers, Lopez, Huntingford, & Allen, 2014; Rypdal, 2015).

Throughout this exposition, we have concentrated on classifying changepoint models with long-memory models. An
interesting statistical avenue to explore would be to include a comparison with long-memory models that also include
changepoints (Beran & Terrin, 1996; Horváth, 2001). The challenge here would be in distinguishing between the change-
point model with short-memory and the changepoint model with long-memory as both would present as nonstationary
spectra; hence, we may expect the two groups to be close. In the context of modeling surface temperatures, we feel that
there is currently not enough data to accurately fit changepoint models with long-memory errors. This is due to the fact
that a typical segment is unlikely to be longer than 50 years, making estimation of the difference between changepoint
and long-memory with changes infeasible.

A limiting factor in the modeling presented here is that the estimation and classification require complete data. An
interesting avenue for further research would be to develop approaches for identifying changepoints and long-memory
in data that contain large periods of missing values. Moreover, the classification is performed in each grid cell separately,
whereas it is likely that the signal and memory in a given grid cell will be similar to its neighbors. As such, integrating
spatial correlation in the analysis has potential to improve the classification for spatial fields such as surface temperatures.
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