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ABSTRACT

The detection of climate change and its attribution to the corresponding underlying processes is challenging

because signals such as trends and shifts are superposed on variability arising from the memory within the

climate system. Statistical methods used to characterize change in time series must be flexible enough to

distinguish these components. Here we propose an approach tailored to distinguish these different modes of

change by fitting a series of models and selecting the most suitable one according to an information criterion.

The models involve combinations of a constant mean or a trend superposed to a background of white noise

with or without autocorrelation to characterize the memory, and are able to detect multiple changepoints in

each model configuration. Through a simulation study on synthetic time series, the approach is shown to be

effective in distinguishing abrupt changes from trends andmemory by identifying the true number and timing

of abrupt changes when they are present. Furthermore, the proposed method is better performing than two

commonly used approaches for the detection of abrupt changes in climate time series. Using this approach,

the so-called hiatus in recent global mean surface warming fails to be detected as a shift in the rate of tem-

perature rise but is instead consistent with steady increase since the 1960s/1970s. Our method also supports

the hypothesis that the Pacific decadal oscillation behaves as a short-memory process rather than forcedmean

shifts as previously suggested. These examples demonstrate the usefulness of the proposed approach for

change detection and for avoiding the most pervasive types of mistake in the detection of climate change.

1. Introduction

The pace of climate change is not smooth; it varies

year-to-year and decade-to-decade, naturally. Climate

records contain shifts or ‘‘abrupt changes’’ due to in-

ternal variability and natural forcings (volcanic and

solar) superimposed on the long-term anthropogenic

climate change trend (Fyfe et al. 2016; Lean and Rind

2009; Trenberth 2015). For example, the global annual-

mean surface temperature (GMST) time series exhibits

periods of warming separated by a long pause from ap-

proximately the mid-1940s to the mid-1970s (Kellogg

1993) and potentially a second and shorter one, al-

though highly debated, since the late 1990s/early 2000s

(Drijfhout et al. 2014; Karl et al. 2015; Trenberth 2015;

Trenberth and Fasullo 2013). Whether this last so-called

hiatus can be characterized as a slowdown in the rate of

climate change is the subject of active debate (Medhaug

et al. 2017) and has led to a fast-growing number of sci-

entific publications (Lewandowsky et al. 2016, 2015).

Discrepancies between the continued warming in models

and apparent slowdown of warming in observations since

the late 1990s/early 2000s have been suggested to arise

frommisrepresentations of forcing or natural variability in

models (Huber andKnutti 2014; Meehl et al. 2014; Risbey

et al. 2014; Santer et al. 2014; Schmidt et al. 2014) or from

data biases in observations (Karl et al. 2015), and such

change would unlikely be persistent (Knutson et al. 2016).

However, few authors have addressed the problem from a

statistical-change-detection perspective (Cahill et al. 2015;

Rahmstorf et al. 2017; Rajaratnam et al. 2015). From this

angle, the main question is whether the GMST trend has

changed in the late 1990s/early 2000s and whether a sig-

nificant slowdown of warming can be detected.

The Pacific decadal oscillation (PDO) has been sug-

gested as a main driver of variability in the GMSTCorresponding author: Claudie Beaulieu, beaulieu@ucsc.edu
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increase (Trenberth 2015), with its cold phases corre-

sponding to periods of paused warming and warm phases

corresponding to GMST increase. The PDO has also

been suggested to be responsible for widespread eco-

system shifts in the North Pacific with repercussions on

the region’s fisheries (Mantua et al. 1997) and drought

effects of El Niño–Southern Oscillation (ENSO; Wang

et al. 2014). Whether PDO shifting patterns arise from

internal variability or from a forced bistable behavior

has also triggered debate in the literature over the last

two decades (Mantua et al. 1997; Newman et al. 2016;

Rodionov 2006; Rudnick and Davis 2003) and has im-

plications for its predictability.

Statistical approaches to characterize change in time

series behaving as a superposition of several compo-

nents such as long-term trends, shifts (i.e., either in the

rate of change or between two stable states), and in-

ternal variability must be flexible enough to distinguish

these components. Internal variability is often charac-

terized by a short-memory process, in which the ocean

and other slow components of the climate system (e.g.,

ice sheets) respond slowly to random atmospheric

forcing, producing climate variability at a longer time

scale than the white noise atmospheric weather. This

mechanism is often referred to as ‘‘red noise’’ in the

climate literature (Frankignoul and Hasselmann 1977;

Hasselmann 1976; Vallis 2010). Natural fluctuations

caused by the internal memory can be large enough to

mask the long-term warming trend and create periods of

apparent slowdown, possibly akin to a ‘‘hiatus,’’ as well

as exaggerate the warming trend for short periods,

which implies risk for ecosystems (Mustin et al. 2013).

Long-term trends and shifts above that level of short-

term memory should represent natural or external

forcings.

Climate science has typically put greater emphasis on

statistical model interpretability rather than flexibility

because focus is more on a system-level understanding

rather than prediction of single events (Faghmous and

Kumar 2014). Therefore, statistical approaches used to

quantify long-term change in climate time series typi-

cally assume the change is linear in time (Hartmann

et al. 2013) and may not allow for all features described

above in the same model, thus leading to five possible

misuses of statistics, which are illustrated in Fig. 1.

The first type of misuse can occur when characterizing

GMST changes (Seidel and Lanzante 2004), that is,

fitting a linear trend in presence of shifts in the mean or

shifts in trend (Fig. 1a), which can potentially bias the

estimated rate of change. A series of alternative piece-

wise linear models has been suggested to represent the

GMST time series including periods of warming sepa-

rated by a pause from themid-1940s to 1970s (Seidel and

Lanzante 2004). However, the performance of such

piecewise models to characterize change in the GMST

depends on their ability to identify the timings separat-

ing the intervals of different rates of warming. Advances

in statistics allow for identifying the timing of such

changes in time series using changepoint detection

(Beaulieu et al. 2012; Reeves et al. 2007), and these

approaches have recently been used to analyze the

GMST time series by fitting piecewise linear models to

objectively detect the timing of changes in the rate of

warming (Cahill et al. 2015; Rahmstorf et al. 2017;

Ruggieri 2013). More commonly in climate studies,

however, changepoint detection has been used to detect

only shifts in the mean of a time series, for example, by

applying the sequential t-test analysis of regime shifts

(STARS) approach (Rodionov 2004). This often leads

to the second type of misuse (Fig. 1b): fitting shifts in the

mean in presence of a background trend. Because the

null model of the STARS approach is a constant mean

and not a secular trend, shifts in the mean will tend to

provide a better fit to the trend than a constant mean.

As such, the method typically interprets a trend as a

‘‘staircase’’ series of abrupt changes (Beaulieu et al.

2016). However, an approach based on model selection,

allowing one to distinguish shifts in the mean from a

background trend, can prevent the problem of confusing

different types of signals as per the first and second

misuses (Beaulieu et al. 2012; Reeves et al. 2007).

In addition to different types of signal that may be

confused, internal variability may also bemisinterpreted

as a forced signal, for example, as a long-term trend or

mean shifts (Figs. 1c,d). Patterns created by the internal

memory of the system challenge signal detection in

climate time series as they pose the risk to be mis-

interpreted as trends or shifts. The risk is greater in the

presence of short records (Wunsch 1999). The short-

termmemory or red noise is often represented by a first-

order autocorrelation [AR(1)] process and complicates

signal detection as the risk of false alarms is increased

when using statistical techniques designed for inde-

pendent data (von Storch 1999; von Storch and Zwiers

1999). In trend detection, the internal variability can be

distinguished from a secular trend by fitting a regression

model containing a trend and AR(1) through general-

ized least squares (Chatfield 2003) or by adjusting the

sample size by the effective number of independent

observations, which is reduced in the presence of auto-

correlation (von Storch and Zwiers 1999), thus avoiding

the third misuse. As for detecting abrupt changes, some

methods have proposed approaches to distinguish

changepoints from autocorrelation using information

criterion and Monte Carlo methods (Beaulieu et al.

2012; Robbins et al. 2016) or prewhitening of the time
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series (Robbins et al. 2016; Rodionov 2006; Serinaldi

and Kilsby 2016; Wang 2008) to prevent the fourth

misuse. Finally, as the natural variability is characterized

by anAR(1) process, it carries memory that offers short-

term predictability. Forecasting a time series using a

stationary AR(1) model when there is an underlying

trend and/or shifts in the mean is the fifth possible mis-

use (Fig. 1e) and will lead to poor predictions.

Our work is thus motivated by the need to distinguish

signals and internal variability in climate and environ-

mental time series, which is fundamental to better

understanding their behavior and predicting future

changes. We investigate the behavior of the GMST and

PDO time series (Fig. 2) by developing an approach that

fits a series of models to a time series and identifies the

most appropriate according to the Akaike information

criterion (AIC), which is twice the model likelihood

penalized by the number of parameters fitted. The

models involve combinations of a constant mean or a

trend, with a background of white noise or an AR(1)

process, and include the possibility of changepoints in

each model configuration so as to yield eight models in

total (Fig. 3). When a model with changepoints is con-

sidered, the number is estimated using an optimal seg-

mentation algorithm (Killick et al. 2012). We refer to

our approach as environmental time series changepoint

detection (EnvCpt) and have also created software

available as an R package on the Comprehensive R

Archive Network (CRAN; Killick et al. 2016). Details

on themethodology are provided in the next section.We

further demonstrate the appropriateness of the meth-

odology through a simulation experiment in which we

apply EnvCpt to synthetic time series mimicking signals

and noise observed in climate time series such as the

GMST and the PDO. We compare our approach to

two methodologies that have been used to investigate

changepoints in the GMST and PDO time series, re-

spectively. More specifically, we compare EnvCpt with

FIG. 1. Five possible misuses of statistics when inferring changes in climate time series exhibiting a long-term

linear trend, shifts, or memory: (a) fitting a linear trend in presence of shifts in the mean or shifts in trend, (b) fitting

shifts in the mean in presence of a trend, (c) fitting a linear trend assuming independent errors (i.e., white noise) in

presence of autocorrelation, (d) fitting shifts in the mean assuming white noise in presence of autocorrelation, and

(e) fitting an AR(1) model in presence of mean shifts.
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the STARS methodology (Rodionov 2004), which has

been designed to detect mean changepoints and has

been used to investigate changepoints in the PDO, among

many other applications in the climate and oceanography

literature. We also compare EnvCpt with a Bayesian lin-

ear regression multiple changepoint-detection method

(BMCpt), which has been used to investigate change-

points in the GMST (Ruggieri 2013).

2. Methods

a. Data

We use five annual GMST datasets:

1) Hadley Centre/Climatic Research Unit, version 4

(HadCRUT4), surface temperature dataset

The HadCRUT4 dataset (version HadCRUT.4.5.0.0;

available at http://www.metoffice.gov.uk/hadobs/

hadcrut4/data/current/download.html; Morice et al.

2012) comprises sea surface temperatures (SSTs) from

the Hadley Centre SST dataset, version 3 (HadSST3;

(Kennedyet al. 2011a,b), andClimaticResearchUnit land

surface temperatures version 4 (CRUTEM4) (Jones et al.

2012). The dataset anomalies are relative to 1961–90.

2) HadCRUT4 infilled by kriging (HadCRUT4krig)

We use a variation of the HadCRUT4 dataset in

which regions with no observations were infilled by

kriging, mainly across the Arctic, Antarctic, parts

of Africa, and other small areas (Cowtan and Way

2014; available at http://www-users.york.ac.uk/;
kdc3/papers/coverage2013/series.html). The refer-

ence period for the anomalies is the same as for

HadCRUT4.

3) Merged Land–Ocean Surface Temperature Analysis

(MLOST)

The MLOST dataset from the National Oceanic and

Atmospheric Administration National Centers for

Environmental Information (Smith et al. 2008; Vose

et al. 2012; available at https://www.ncdc.noaa.gov/

cag/time-series/global) combines land air tempera-

tures from the Global Historical Climatology Net-

work, version 3.3.0 (GHCNv3.3.0), and the Extended

Reconstructed Sea Surface Temperature, version 4

(ERSST.v4; Huang et al. 2015; Liu et al. 2015).

The anomalies are with respect to the 1971–2000

period.

4) Goddard Institute for Space Studies (GISS) Surface

Temperature Analysis (GISTEMP)

FIG. 2. Datasets used in this study: (a) GMST from HadCRUT4, HadCRUT4krig, BEST,

MLOST, and GISTEMP and (b) the PDO.
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The GISTEMP dataset also combines land and

SST temperatures from GHCNv3.3.0 and ERSST.

v4 but also includes the Scientific Committee on

Antarctic Research (SCAR) stations over Antarc-

tica (Hansen et al. 2010; available at http://data.

giss.nasa.gov/gistemp). The anomalies are relative

to 1951–80.

5) Berkeley Earth Surface Temperatures (BEST)

The BEST dataset (Rohde et al. 2013; available

at http://berkeleyearth.org/data) uses SST derived

from HadSST3 combined with CRUTEM4 land

air temperatures, and stations from the GHCN

network. Anomalies are given with respect to

1961–90.

We use the HadCRUT4, HadCRUT4krig, and BEST

annual GMST datasets from 1850 to 2016 and the

MLOST and GISTEMP annual GMST datasets from

1880 to 2016 (Fig. 2). These datasets share core common

observations but have been processed, bias corrected,

FIG. 3. Fit of the eight models in EnvCpt to five GMST datasets for (a) HadCRUT4, (b) HadCRUT4krig,

(c) BEST, (d) MLOST, (e) GISTEMP, and (f) the PDO. The tick marks indicate where changepoints were

detected. For each dataset, the AIC differences D between each model and the best-performing model

(smallest AIC) are also shown on a logarithmic scale adjusted so that the best model has a log difference of

zero and is indicated by a star. The dotted vertical lines indicate cutoffs of models’ evidence; there is sub-

stantial support for models with a difference below the red line and essentially no support for models with

differences above the black line.
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and interpolated independently (Jones and Kennedy

2017; Jones 2016).

The PDO dataset used was derived as the leading

principal component of monthly sea surface temper-

ature in the North Pacific (downloaded from http://

jisao.washington.edu/pdo/PDO.latest; Mantua et al.

1997; Zhang et al. 1997). Annual means from 1901 to

2016 were calculated from the monthly values as a

mean from January to December for each year and

presented in Fig. 2.

b. EnvCpt description

EnvCpt fits eight models often used to represent

climate and environmental time series and selects

which one provides the best fit to represent the time

series. The simplest models for the time series assume

that the series is well represented by either a constant

mean or a linear trend in addition to a background

white noise. These simple models are also fitted

superposed to an AR(1), leading to four types of

models without changepoints. Then, models including

changepoints in all model parameters (mean or

trend, variance and autocorrelation) are also fitted,

leading to a total of eight models that are described

below:

1) A constant mean (Mean),

y
t
5m1 e

t
, (1)

where yt represents the time series, t is the time, m is

the mean, and et is the white noise errors, which are

independent and identically distributed following

a normal distribution with a mean of zero and

variance s2

2) A constant mean with first-order autocorrelation

[Mean 1 AR(1)],

y
t
5m1uy

t21
1 e

t
, (2)

where u is the first-order autocorrelation coefficient

3) A linear trend (Trend),

y
t
5 l1bt1 e

t
, (3)

where l and b represent the intercept and trend

parameters, respectively

4) A linear trend with first-order autocorrelation

[Trend 1 AR(1)],

y
t
5 l1bt1uy

t21
1 e

t
(4)

5) Multiple changepoints in the mean (Mean cpt),

y
t
5

8>>>><
>>>>:

m
1
1 e

t
, t# c

1

m
2
1 e

t
, c

1
, t# c

2

..
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m
1 e

t
, c

m21
, t# n

, (5)

where m1, . . . , mm represent the mean of each of

the m segments with variance s2
1, . . . , s

2
m, respec-

tively; c1, . . . , cm21 the timing of the changepoints

between segments; and n is the length of the

time series

6) Multiple changepoints in the mean and first-order

autocorrelation [Mean cpt 1 AR(1)],

y
t
5

8>>>><
>>>>:

m
1
1u

1
y
t21

1 e
t
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1
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2
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1
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2

..
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m
m
1u

m
y
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t
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m21
, t# n

, (6)

where u1, . . . , um represent the autocorrelation in

each segment

7) A trend with multiple changepoints in the regression

parameters (Trend cpt),

y
t
5

8>>>><
>>>>:

l
1
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1
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t
, t# c

1

l
2
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where l1, . . . , lm and b1, . . . , bm represent the in-

tercept and trend in each segment

8) A trend with multiple changepoints in the regression

parameters and first-order autocorrelation [Trend

cpt 1 AR(1)],

y
t
5

8>>>><
>>>>:

l
1
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1
t1u
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(8)

The theoretical parameter ranges are real numbers for

the means, trends, and intercepts; positive real numbers

for the variances; [21, 1] for first-order autocorrelation

coefficients; and [p, n2 p] for the changepoint timings

with p parameters in the model form. The methodol-

ogy considers all possible parameters and number of

changes across the eight models.
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Each model is fitted according to maximum likeli-

hood estimation. For the changepoint models, we find

the number and location of changepoints using the

pruned exact linear time (PELT) algorithm (Killick

et al. 2012), which identifies changepoints by per-

forming an exact search considering all options for

any possible number of changes (varying from 1 to the

maximum number of changepoints given the set

minimum segment length). The search strategy is ex-

act with a computational cost that is linear in the

number of data points. The PELT method is used in

combination with the modified Bayesian information

criterion (MBIC) as the penalty function (Zhang and

Siegmund 2007) to select the optimal number of

changepoints, as this approach balances the overall fit

against the length of each segment. Hence, it naturally

guards against small segments unless it produces a

significantly improved fit. The PELT methodology

may choose no changepoint as the best model in which

it reduces to the same likelihood as the no-change

equivalent model. The model selection is automated

using the AIC, which penalizes the model likelihood

by the number of parameters fitted for each model

considered (Akaike 1974). The EnvCpt package pro-

vides the likelihood and number of parameters fitted

for each model. As such, any other criteria or metric

based on the likelihood can be used for the model

selection. However, we use the MBIC for determining

changepoints as the AIC has been shown to system-

atically overestimate the number of changes (Haynes

et al. 2017). The pseudo algorithm for EnvCpt and

additional details about PELT are presented in

appendix A.

The best model is selected as the one with the

smallest AIC. While the choice according to the mini-

mum AIC does not provide a measure of uncertainty,

the AIC differences Di between the best model and the

remaining models can be used to evaluate plausibility

of the models fitted:

D
i
5AIC

i
2AIC

min
, (9)

where i denotes themodels fitted (i5 1,. . .,8). The larger

the difference, the less plausible a model is, given the

data and models considered (Burnham and Anderson

2002). As a rule of thumb, a Di of 0–2 provides sub-

stantial support for model i, while Di of 4–7 has consid-

erably less support, and essentially none if the difference

is larger than 10 (Burnham and Anderson 2002). While

comparing the differences to a rule of thumb is useful to

identify a subset of models at play, we can also quantify

the plausibility of the models fitted given the data using

Akaike weights:

w
i
5

exp(20:5D
i
)

�
8

r51

exp(20:5D
r
)

. (10)

The weights wi represent the evidence in favor of model

i being the best model given the data and the set of eight

models fitted.

c. Simulation of synthetic series

Synthetic series mimicking typical features observed

in GMST and PDO time series issued from the eight

general models described in the previous section were

generated to assess the performance of EnvCpt. We

generated a set of synthetic series inspired by the GMST

record with a total of 166 years that corresponds to the

four models including a trend component fitted to the

GMST (Fig. 3) with 1) a long-term trend; 2) a long-term

trend with first-order autocorrelation; 3) a trend with

three changepoints in 1906, 1945, and 1976; and 4) one

changepoint in the trend and autocorrelation in 1962.

We also generated synthetic time series inspired by the

PDO with a length of 116 years to represent the com-

peting models suggested to characterize the PDO be-

havior: 1) mean changepoints in 1948 and 1976 with or

without a background of AR(1) (Rodionov 2004, 2006)

and 2) first-order autocorrelation model (Newman et al.

2016). For completeness, the constant mean model used

here represents a ‘‘null’’ model for the two hypotheses.

Figure 4 presents the eight cases of synthetic series

generated to mimic the GMST and PDO. The specific

parameters used to simulate the synthetic series are

presented in appendix A (Table A1). For each category, a

total number of 1000 synthetic series were generated and

analyzed.

d. Comparison with STARS

We compare our approach to STARS (Rodionov

2004, 2006) using the code available online (see http://

www.climatelogic.com/download). This approach has

been used previously to investigate the presence of

mean shifts in the PDO (Rodionov 2004, 2006). STARS

uses a binary segmentation algorithm that identifies

changes sequentially. As such, this procedure finds the

most likely changepoint, then splits the data at the

change if it is significant and searches for further changes

in each segment. This procedure is repeated iteratively

until no more changes are detected or the segments are

becoming smaller than the set minimum segment length.

The decision rule for the presence of changepoints is

based on a t test between segments (Rodionov 2004). A

minimum segment length default of 10 observations

and a critical level of 5%were used in the present study.

Thus, we set the same default minimum segment length
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with EnvCpt to carry out the simulations, although other

options can be used. The STARS methodology is de-

veloped to detect shifts in the mean; however, we pres-

ent results for all considered models to demonstrate the

errors produced when trends are not accounted for

within the model. Furthermore, STARS is not originally

designed to handle autocorrelation, and prewhitening of

the time series has been suggested when its presence is

FIG. 4. Synthetic time series example from each simulation scenario case for (a) a linear trend, (b) a linear trend

with AR(1), (c) a trend with three changepoints in the regression parameters, (d) a trend with a changepoint in the

regression parameters andAR(1), (e) a constantmean, (f) a constantmean withAR(1), (g) two changepoints in the

mean, and (h) two changepoints in themean withAR(1). For each case, a total number of 1000 random replications

are simulated.
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suspected (Rodionov 2006). Thus, we also applied STARS

with two prewhitening approaches after some parameter

tuning (appendix C). The results obtained after pre-

whitening are presented in appendix D.

e. Comparison with BMCpt

We also compare our approach to a Bayesian identi-

fication of multiple changepoints in a regression model

(BMCpt), which has been used to investigate the pres-

ence of changepoints in the GMST (Ruggieri 2013). We

use the code made freely available online (see http://

mathcs.holycross.edu/;eruggier/software.html). This

approach allows for the detection of changes in the pa-

rameters of a regression model and thus can detect

changes in the mean, trend, and/or variance. The exact

solution to the multiple changepoint detection is obtained

using dynamic programming recursions. Here we use a

minimum segment length between two shifts of 10, the

same as used for EnvCpt and STARS. This approach

necessitates setting several other parameters, which are

chosen as per the recommendations in Ruggieri (2013)

and are described in appendix B. The hyperparameters for

the variance prior are optimized, as these have an effect on

the number of changepoints detected (Fig. B1; appendix B).

BMCpt is also designed to fit a regression model with in-

dependent residuals. Thus, we also apply it to the models

with AR(1) after prewhitening. Again, the choice of pre-

whitening parameters is determined by optimizing them to

give the best performance and is presented in appendix C.

3. Results

a. Analysis of the GMST and PDO time series

The eight EnvCpt models are fitted to the GMST

datasets and the PDO in Fig. 3. Table 1 presents theAIC

differences for each model and their respective weights.

For most datasets, the evidence for the Trend cpt 1
AR(1) model is strong, with probabilities of 1 for BEST,

MLOST, and GISTEMP, respectively (Table 1). For

these three datasets, none of the seven other models are

considered plausible (Di . 10;wi 5 0; i5 1, . . . , 7). The

HadCRUT4krig dataset reveals more uncertainty, with

substantial evidence for both the Trend cpt 1 AR(1)

and the Trend cpt models Di , 2; i5 7,8 ), but a higher

probability for the Trend cpt 1 AR(1) model [0.68 for

Trend cpt 1 AR(1) as opposed to 0.32 for Trend cpt;

Table 1]. On the opposite, for the HadCRUT4 dataset,

the best model is Trend cpt with a probability of 0.98,

while there is limited evidence for the Trend cpt 1
AR(1) model (probability of 0.02).

For most GMST datasets, the best model fit has one

changepoint in both the trend and autocorrelation
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[Trend cpt 1 AR(1)] in 1962 or 1972 depending on the

source of the GMST data (Figs. 3b–e; Table 1). At that

time, the rate of warming increases and is accompanied

by awhitening of theGMST, that is, theAR(1) weakens.

The trend and AR(1) parameters associated with this fit

are presented in Table 2. The competing model (Trend

cpt) exhibits a flat mean until 1906, which was followed

by a warming period until 1945, then another period of

minimal temperature change that lasted until 1977, fol-

lowed by a warming trend until now (Figs. 3a,b). It must

be noted that all models fitted are valid if their un-

derlying assumptions of normality and independence of

the residuals are met. Overall, these assumptions are

verified under the Trend cpt 1 AR(1) fit, but not under

theTrend cptmodel (Figs. E1, E2; TableE1; appendixE).

This further validates a background AR(1) and the oc-

currence of one changepoint in the GMST in 1962

or 1972, as opposed to several changes. The GMST has

also been suggested to follow a second-order autocor-

relation [AR(2)] model previously (Karl et al. 2000).We

find that while two datasets indicate a potential AR(2)

structure in the residuals (Figs. E2a,b; appendix E), the

fits are validwith anAR(1) (Fig. E1;TableE1; appendixE).

Furthermore, an AR(2) does not seem to improve the

likelihood of the model enough to be worth including as

all models with an AR(2) lead to substantially higher

AIC (Table E1; appendix E).

The only model detecting a changepoint in the late

1990s/early 2000s is the staircase model (Mean cpt), for

which there is essentially no evidence (w5 5 0), given the

datasets and other models considered (Figs. 3a–e). As

such, this result suggests that themost recent hiatus does

not emerge as a global signal but rather indicates that

the GMST rate of change has remained approximately

constant (linear) since the 1960s/1970s with some fluc-

tuations arising from the memory in the system.

As for the PDO, the best-fitting model is a constant

mean and autocorrelation [Mean 1 AR(1)] with a

probability of 0.56 (Table 1; Fig. 3f) and has valid un-

derlying assumptions (Fig. E3; Table E1). None of the

models including changepoints are considered at play, as

either no changepoints are detected [Mean cpt1AR(1)

and Trend cpt 1 AR(1)] or they are associated with

large AIC differences (Table 1). The Trend 1 AR(1)

model is the only competingmodel (D4 5 1:1;w4 5 0:44),

unveiling some uncertainty about the best way to char-

acterize PDO behavior. However, models including a

trend would be counterintuitive to represent PDO be-

havior (Newman et al. 2016).

b. Simulation study

EnvCpt was also applied to the eight different sets of

synthetic series generated. To emphasize the flexibility

of the methodology developed, we compare it with two

other approaches both detailed in the methods. It must

be noted that EnvCpt is developed to distinguish all

combinations of trends, changepoints, and autocorrela-

tion, and thus we expect it to overall outperform BMCpt

and STARS, which are both designed for more specific

features. Specifically, BMCpt was developed to detect

changes in a linear regression model, and it should thus

perform similarly to EnvCpt in presence of a constant

mean or trend, with or without changepoints (cases

Mean, Mean cpt, Trend, and Trend cpt). Correspond-

ingly, STARS was developed to detect mean shifts only

and should be performing in the simulation scenario

cases Mean and Mean cpt. Neither STARS nor BMCpt

were originally designed to handle a background of

autocorrelation. To work around that limitation, we also

apply the methods on the synthetic series with AR(1)

after prewhitening, which necessitates some parameter

tuning (see appendix D).

Figure 5 presents the number of shifts detected by

EnvCpt, STARS, and BMCpt in each simulation case.

The results demonstrate that EnvCpt correctly identifies

the number of changepoints at a higher frequency than

STARS and BMCpt in most synthetic series, although

BMCpt is equivalent in half of the cases. In presence

of a trend only, both EnvCpt and BMCpt succeed at

identifying no change (Fig. 5a). However, in presence

of three trend changepoints (Fig. 5c), EnvCpt detects

the three shifts at the highest frequency, while BMCpt

tends to interpret them as two shifts, instead. The rate

of false detection with BMCpt increases in presence of

TABLE 2. Trend and AR(1) parameter estimates for the model with trend changepoints and AR(1) [Trend cpt 1 AR(1)] in the five

GMST datasets.

Dataset Cpt timing

Trend AR(1)

Before cpt After cpt Before cpt After cpt

HadCRUT4 1962 0.001 0.013 0.653 0.195

HadCRUT4krig 1972 0.001 0.018 0.635 0.083

BEST 1962 0.001 0.015 0.656 0.148

MLOST 1962 0.001 0.015 0.706 0.144

GISTEMP 1962 0.002 0.016 0.644 0.112
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autocorrelation (Fig. 5b), illustrating misuse 3. In the sim-

ulation case Trend cpt 1 AR(1), EnvCpt and BMCpt are

equivalent (Fig. 5d) even though BMCpt is not designed to

handle autocorrelation. We attribute this result to the fact

that BMCpt can detect changes in the variance, thus in-

terpreting the changingAR(1) here as a change in variance.

Finally, in presence of mean shifts [cases Mean cpt and

Mean cpt 1 AR(1)], BMCpt tends to detect fewer shifts

than the true number of changepoints (Figs. 5g,h). Indeed,

when using a changepoint approach fitting a piecewise lin-

ear regression model in presence of mean shifts only, con-

secutive staircase mean shifts may be interpreted as a trend

as per misuse 1. Prewhitening reduces the rate of false de-

tection by BMCpt in the Trend1AR(1) scenario, but also

diminishes the power of detection for the Trend cpt 1
AR(1) andMean cpt1AR(1) cases (Fig.D1; appendixD).

STARS tends to overestimate the number of change-

points and frequently misidentifies an underlying trend

as a series of shifts, illustrating misuse 2 (Figs. 5a–d). In

the cases of a constant mean or changepoints in themean,

STARS should be equivalent to EnvCpt, but tends to

detect additional spurious shifts (Figs. 5e,g). This is par-

ticularly surprising for the Mean case (Fig. 5e), as the

STARS methodology should be able to return a no-

change model in this case but rather detects changes in

over 34% of the series. However, although a 5% critical

level is usedwhenmultiple shifts are present, this does not

correspond to a 5% critical level for the overall segmen-

tation given that the test is applied repetitively. Ap-

proaches based on a maximal type t test or F test, which

accounts for the fact that the test statistic is calculated for

each potential changepoint timing in the time series, re-

duce false alarms to the expected level (Lund and Reeves

2002; Wang et al. 2007). The tendency for spurious de-

tection with STARS is aggravated in presence of auto-

correlation (Fig. 5f), where STARS detects changes

in 96% of the series when none should be detected,

illustrating misuse 4. The rate of false detection is re-

duced with prewhitening and the detection power im-

proved for the Mean 1 AR(1) and Mean cpt 1 AR(1)

cases (Fig. D1; appendix D).

While the number of positive and false-positive changes

detected by a given model provides a picture of the

performance, it does not indicate whether the change-

points are correctly localized in the time series. Figure 6

presents density estimates of the locations of the iden-

tified changepoints for synthetic series that were gen-

erated with changepoints. This again demonstrates

that EnvCpt outperforms STARS and BMCpt over-

all. EnvCpt clearly identifies the location of the trend

FIG. 5. Number of changepoints detected with EnvCpt, STARS, and BMCpt with prewhitening across 1000 replications for (a) a linear

trend, (b) a linear trend withAR(1), (c) a trend with three changepoints in the regression parameters, (d) a trend with a changepoint in the

regression parameters and AR(1), (e) a constant mean, (f) a constant mean with AR(1), (g) two changepoints in the mean, and (h) two

changepoints in the mean with AR(1). Overall, EnvCpt is closer to the true number of changepoints than STARS and BMCpt.
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changepoints, while both BMCpt and STARS tend to

detect spurious changes between the true changepoints

(Fig. 6a), especially toward the end of the series with

STARS (Figs. 6a,b,d). The threemethods are equivalent

in detecting the location of the mean changepoints

(Fig. 6c). It must be noted that the height of the density

peaks may suggest that BMCpt is better performing in

the Mean cpt1AR(1) scenario, but this is due to fewer

changes being detected with this approach (Fig. 5h). The

density and number of changepoints should be consid-

ered together.

4. Discussion

Our results suggest that the GMST rate of change

has changed once in 1962 or 1972 and has remained

approximately constant since then with fluctuations due

to the presence of memory in the system. Furthermore,

we find that the GMST is ‘‘whitening’’ around that time;

that is, the AR(1) parameter weakens. This result is

consistent across most datasets with high evidence

(Table 1). Our GMST characterization is different from

previous parametric changepoint analysis of the global

temperature record (Cahill et al. 2015; Rahmstorf et al.

2017; Ruggieri 2013) that suggested the presence of

three changepoints in the GMST rate of warming in the

1900s, 1940s, and 1970s. The main difference lies in the

treatment of autocorrelation: Our approach formally

takes into account the autocorrelation by the means of

anAR(1). Indeed, the optimal fit of the Trend cpt model

for the HadCRUT4 dataset (Fig. 3a), which does not

take account of AR(1), detects three changepoints as in

FIG. 6. Density of changepoint timings detected using EnvCpt, STARS, and BMCpt for the four simulated

scenarios with changepoints across 1000 replications for (a) a trend with three changepoints in the regression

parameters, (b) a trend with a changepoint in the regression parameters and AR(1), (c) two changepoints in the

mean, and (d) two changepoints in the mean with AR(1). Overall, EnvCpt identifies correctly the true changepoint

locations, while STARS and BMCpt may detect changepoints at timings when none were introduced in the syn-

thetic series in presence of trend changepoints.
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previous studies. However, autocorrelation is present in

the residuals such that the underlying assumption of

independent residuals is violated under the Trend cpt

model. The timings of changepoints under this model

setting (Trend cpt) are not consistent across all

GMST datasets, signaling additional uncertainty. If the

Bayesian information criterion (BIC; Schwarz 1978) is

used to select the best model instead of the AIC, the

Trend cpt 1 AR(1) model is selected for all datasets

(Table F1). We therefore argue that the Trend cpt

model should not be used without AR(1) to characterize

the GMST. The GMST has also been suggested to fol-

low an AR(2) model previously (Karl et al. 2000). Here

we find that an AR(2) does not improve the likelihood

of the model enough to be worth including as the

noise term (Table E1; appendix E). Previous work has

also suggested the presence of long-term memory in sur-

face temperature records (e.g., Franzke 2012; Løvsletten
and Rypdal 2016), as opposed to the short-term memory

detected here. In presence of long-term memory, the au-

tocorrelation function will not decay exponentially as ob-

served here but rather decays as a power law such that it

does not reach zero (Yuan et al. 2015). While we do not

find long-term memory in the residuals of the five GMST

records analyzed here, we acknowledge that its potential

presence presents a risk to misinterpret it as a trend or an

abrupt change with EnvCpt, but longer records are likely

needed to make this distinction (Poppick et al. 2017).

Consequently, our results suggest that the changepoints

previously detected in the 1900s and 1940s may not be

unusual given the backgroundmemory. These timings also

coincide with the period of highest uncertainty in SST

measurements due to corrections applied to account for

changes of instrumentation (Jones 2016; Kent et al. 2017;

Thompson et al. 2008). Despite different results due to

different changepoint-detection approaches, we do agree

with previous studies (Cahill et al. 2015; Rahmstorf et al.

2017; Ruggieri 2013) that the most recent hiatus in GMST

does not emerge as a global signal, regardless of whether

or not AR(1) is considered. Hence, the only model fitted

that contains a changepoint in the late 1990s/early 2000s

is a staircase in theGMST (Mean cpt) and that model fit is

rendered unlikely by its large AIC values (Fig. 3).

It must be noted that the five datasets employed in this

study are not independent; they all use in part the same

input data for the land and ocean but employ different

methodologies for correcting biases and inhomogenei-

ties and for interpolating (Jones 2016). As such, the

similar results obtained with the five datasets do not

provide independent pieces of evidence that a change-

point took place in 1962 or 1972 but rather provides a

measure of the uncertainty arising from the different

approaches used to create these datasets.

To our knowledge, the whitening of the GMST has

not been described in previous studies because meth-

odologies able to detect shifts in the autocorrelation,

such as EnvCpt, have not been applied to GMST data-

sets before. The sudden decrease in memory detected

here could be due to changes in SST measurements, as

the timing marks the start of a period of SST measure-

ments obtained from a more diverse observing fleet and

reduced bias (Kent et al. 2017; Thompson et al. 2008).

Future studies should investigate the regions respons-

ible for the changepoint in GMST and investigate the

underlying causes.

As for the PDO, we show that a model with a flat

mean and first-order autocorrelation provides the

best fit (Fig. 3f), which is in agreement with previous

studies (Newman et al. 2016; Rudnick and Davis 2003).

Conversely, a previous study has interpreted the PDO

as a series of shifts in the mean in the 1940s and 1970s,

superposed to an AR(1) (Rodionov 2006), which was

taken as support for the hypothesis of a bistable be-

havior. When focusing on a shorter period of time, the

1970s shift was also suggested to emerge from the

background of autocorrelation, although the authors

questioned the robustness of this result and emphasized

the need of a methodology such as the one presented

here (Beaulieu et al. 2016). Our new methodology

formally compares the two statistical representations

[AR(1) process vs bistability with mean shifts] of the

PDO by considering them objectively, and we conclude

that it is best modeled as autocorrelation only, without

shifts. This result is consistent if the BIC is used to

select the best-performing model instead of the AIC

(Table F1). Memory in the PDO can offer short-term

predictability a few years ahead, depending on the

strength of the first-order autocorrelation. Specifically,

the first-order autocorrelation of 0.55 in the PDO time

series analyzed here translates into a decorrelation time

of 3.5 years (von Storch and Zwiers 1999) after which

the current PDO value will be ‘‘forgotten.’’ This pre-

dictability could be key for management, as PDO pat-

terns have widespread repercussions and have been

suggested to be responsible for ecosystem regime shifts

in the North Pacific and regional droughts (Mantua et al.

1997; Wang et al. 2014). More recently, it has been

suggested that the PDO is ‘‘reddening’’ at the monthly

time scale; that is, the AR(1) is increasing as a sign of

critical slowing down (Boulton and Lenton 2015; Lenton

et al. 2017).We do not detect this feature here, but this is

not surprising since our approach is not designed to

detect a trend in autocorrelation and has been applied at

the annual time scale.

As the PDO and GMST records become longer, the

best-fitting model may change. More precisely, EnvCpt
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is expected to select the true underlying model and de-

tect changes more accurately as the number of obser-

vations increase (Killick et al. 2012).

The simulation study demonstrates the advantage

of a single comprehensive method to avoid five misuses

of statistics in analyzing climate time series. Our ap-

proach reduces the number of presumptions about the

presence of trends, shifts, and autocorrelation in the

time series. In eight cases of synthetic series mimicking

features observed in the GMST and the PDO, our ap-

proach shows high skill in selecting the correct number

of changepoints in mean and slope and to locate the

changepoints correctly when present. A drawback is that

our conclusions are limited to the synthetic series gen-

erated for our simulation study. However, previous

simulation studies of changepoint-detection techniques

on synthetic series with shifts having a random tim-

ing and magnitude have been carried out before and

revealed expected features that are common to most

techniques. First, the signal-to-noise ratio matters the

most; that is, a shift with a large magnitude compared to

the background noise has a higher hit rate (Beaulieu

et al. 2012, 2008; Reeves et al. 2007; Wang et al. 2010).

Second, false alarms occur more often at the beginning

or end of the time series (Beaulieu et al. 2012). Third,

successive shifts that are near in time tend to be more

difficult to detect, especially if the magnitudes have the

same sign (e.g., an increase followed by another increase

is more difficult to detect than an increase followed by a

decrease; Beaulieu et al. 2008).

Here we focus on comparing EnvCpt to STARS and

BMCpt, which have been used to investigate changes in

PDO and GMST, respectively. Overall, our approach

clearly outperforms these two methods. This result was

to be expected as STARS and BMCpt only consider a

subset of the models fitted within EnvCpt. For example,

the STARSmethodology is developed to detect shifts in

the mean only. In terms of the model fit, it is equivalent

to considering only the Mean and Mean cpt models fit-

ted with EnvCpt, thereby ignoring the possibility of and

misinterpreting underlying trends. BMCpt is more

flexible than STARS and designed to detect changes in

the parameters of a regression model, so is also equiv-

alent to fitting the models Trend and Trend cpt. Since

both of these approaches were developed for inde-

pendent data, all the models including an AR(1) are

excluded from STARS and BMCpt. While this issue can

be mitigated with well-tuned prewhitening (appendix

C), EnvCpt has the additional advantage of natively

supporting AR(1) detection without any parameter

tuning. In our attempts to tune the prewhitening for

STARS and BMCpt, we used a subsample size of 20,

which is smaller than the length between the shifts

inserted in the synthetic series and shown to be opti-

mal (appendix C). Knowing a priori the minimum dis-

tance between two shifts is of great benefit for the

tuning, but the necessity of tuning is a great disadvan-

tage for STARS and BMCpt. That is, when the ‘‘truth’’

is unknown the choice of parameter values for the

prewhitening is likely to induce errors (Fig. C1;

appendix C).

Several other methods have been proposed in the

literature to detect multiple changepoints in environ-

mental time series (e.g., Beaulieu et al. 2012; Gazeaux

et al. 2011; Lu et al. 2010; Reeves et al. 2007; Seidou and

Ouarda 2007; Tomé and Miranda 2004; Wang 2008),

although these models assume independent errors and

thus cannot distinguish signals from autocorrelation,

similar to STARS and BMCpt. To mitigate this issue,

one can use prewhitening techniques, although we show

that prewhitening has the disadvantage to necessitate

some parameters tuning. It has also been argued that an

approach that forces the lines of the piecewise linear

model to meet assuring continuity between the trends

is more physically plausible in the case of the GMST

(Cahill et al. 2015; Rahmstorf et al. 2017). Here we do

not force the lines of the piecewise linear model to meet,

but we find quasicontinuous trends for the GMST (see

Fig. 3). Imposing the continuity condition would restrain

our approach andmake it unsuitable for the detection of

climate regime shifts, which are discontinuous and typ-

ically represented by abrupt changes in the mean. The

main advantage of the approach suggested here is its

flexibility and applicability to a wide range of climate

time series, as illustrated through the GMST and PDO.

The flexibility and breadth of applicability extends

beyond inferring changes in the mean and trend as

illustrated with these two examples. Hence, EnvCpt is

designed to detect changepoints in all parameters of the

models fitted, including changes in autocorrelation and

variance. There may be cases in which the variability and/

or dependence between successive observations are dif-

ferent after the start of a new regime in the climate system

or because of changes in measurements procedures.

Keeping the methodology as general as possible en-

sures these cases can also be analyzed with EnvCpt.

Correctly identifying climate change signals is central

to their understanding, as mechanisms responsible for

secular trends and abrupt changes are likely to be dif-

ferent (e.g., anthropogenic influence vs natural forc-

ings). However, abrupt changes can also be induced in

time series through gradual increase in anthropogenic

forcing when a critical threshold is crossed (Lenton

2011). Further investigation of the forcing–response

relationship can help identify threshold and nonlinear

dynamics, but correctly identifying the timing of an
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abrupt change is a crucial first step (Andersen et al.

2009). Our EnvCpt approach is timely, as increasing

anthropogenic pressure on the climate system is ex-

pected to lead to more frequent occurrences of abrupt

changes in the physical climate system (Drijfhout

et al. 2015).

Our methodology is flexible, as it models different

types of signals and memory in the system. However, it

assumes that temporal changes in climate time series are

piecewise linear on a background of white noise or first-

order autocorrelation and that measurement errors are

random. While these assumptions are reasonable in

many instances, there may be cases of climate time se-

ries with additional complexities such as long-term

memory. Departures from these assumptions may

cause problems with the model selected as serious as

the five pervasive mistakes we are trying to avoid with

EnvCpt. Thus, it is recommended to combine the model

selection with an analysis of the residuals as done here

(appendix E) and to consider models that are physi-

cally plausible. Given that model selection is used with

EnvCpt, it can be easily extended to consider noise

terms with additional parameters such as autoregressive

moving-average (ARMA) models with higher-order

and alternative model forms (e.g., nonlinear). The

models could be extended to take into account co-

variables that may explain part of the variability in cli-

mate time series. For example, ENSO could potentially

explain part of the variability both in the GMST and

PDO analyzed here and contribute to reducing the un-

explained variability. When modifying the models used

here, one must keep in mind that the AIC weights are

dependent on the subset of models being compared.

As such, if additional models were being considered,

the probabilities of the eight models compared here

may change. Finally, another advantage of an approach

based onmodel selection is that it can be easily modified

to use a different information criterion such as the BIC,

but the results may vary. We illustrate this in appendix F

and show that using the BIC instead of the AIC in the

simulation study can slightly improve the results for

most cases of synthetic series, except for theMean cpt1
AR(1) case, for which the results are worst (Fig. F1).We

refrain from making a universal recommendation here,

as there are many factors affecting the performance of

AIC and BIC (Burnham and Anderson 2002) with

considerations that are going beyond our simulation

study. This aspect should be the focus of future work.

TABLE A1. List of parameters used to simulate the sets of synthetic series.

Variable Model Parameters

PDO (n 5 116 years) Mean m5 0:028, s5 0:8

Mean 1 AR(1) m5 0:049, u5 0:522, s5 0:8

Mean cpt m1 5 0:222, m2 520:652, m3 5 0:271, c1 5 49, c2 5 77, m5 3, s5 0:3

Mean cpt 1 AR(1) m1 5 0:222, m2 520:652, m3 5 0:271, u1 5u2 5u3 5 0:402, c1 5 49, c2 5 77, m5 3,

s5 0:3

GMST (n 5 166 years) Trend l520:513, b5 0:005, s5 0:1

Trend 1 AR(1) l520:128, b5 0:001, u5 0:756, s5 0:3

Trend cpt l1 520:299, l2 521:327, l3 5 0:171, l4 522:124, b1 520:001, b2 5 0:014,

b3 520:002, b4 5 0:016, c1 5 57, c2 5 96, c3 5 127, m5 4, s5 0:4

Trend cpt 1 AR(1) l1 520:112, l2 521:707, b1 520:001, b2 5 0:013, u1 5 0:659, u2 5 0:153, c1 5 113,

m5 2, s5 0:1

FIG. B1. Number of changepoints detected with BMCpt for the (a) Trend cpt and (b) Mean cpt scenario across

1000 replications. Changepoints were detected using a range of values for the pseudo–data point of variance pa-

rameter n0.
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APPENDIX A

Technical Detail on the EnvCpt Approach and
Simulations

The EnvCpt approach fits eight different models to

the data and returns the fit and number of parameters

for each model. The pseudocode for the algorithm is

as follows:

EnvCpt Pseudo Algorithm

Inputs: Time series yt
msl 5 Minimum number of time points
between changes (default 5)
pen 5 Penalty for changepoint algo-
rithms (default MBIC)
Initialize: Let n 5 length of time
series

Fit: 1. Constant mean with independent
errors via maximum likelihood
2. Constant mean with AR(1) errors
via maximum likelihood

3. Linear trend with independent
errors via maximum likelihood
4. Linear trend with AR(1) errors via
maximum likelihood
5. Constant mean changepoint model
with independent errors via PELT
algorithm with msl and pen options.
6. Linear trend changepoint model
with independent errors via PELT
algorithm with msl and pen options.
7. Constant mean changepoint model
with AR(1) errors via PELT algorithm
with msl and pen options.
8. Linear trend changepoint model
with AR(1) errors via PELT algorithm
with

msl and pen options.
Output: A matrix of likelihood values and

number of parameters for each model
fit. A
list containing the fit for each of
the eight models.

Using the output, one can compute an information cri-

terion to determine the model that best fits the data—in

this study we use the AIC. See appendix E for a sensi-

tivity study to the choice of criterion.

The PELT algorithm used in the EnvCpt procedure

is described mathematically in (Killick et al. 2012).

Contrary to binary searches, where the most likely

change is identified and the time series is split at that

point, the PELT algorithm solves the segmentation

problem exactly by performing a search considering all

FIG. C1. Density of changepoint locations for the changepoints in the mean and a background AR(1) [Mean

cpt 1 AR(1)] scenario across 1000 replications. Changepoints were detected with (a) STARS and (b) BMCpt

methodologies using a range of subsample sizes for prewhitening using the MP and INV approaches. A subsample

size of 20 is shown optimal here for bothmethods. For STARS, very large or very small subsample sizes lead to false

detections at the end of the time series. For BMCpt, very large or very small sample sizes lead to improved detection

of one shift to the detriment of the other.
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options for any possible number of changes (varying

from 1 to the maximum number of changepoints given

the set minimum segment length). This search is com-

pleted efficiently using a combination of dynamic pro-

gramming and pruning. Dynamic programming allows

us to consider the data sequentially from the start to the

end and monitor the location of the last changepoint

only, which reduces the computational time signifi-

cantly. However, as the size of the data grows, it re-

mains time consuming to monitor all potential last

changepoint locations. Thus, pruning is used to solve

this issue. For example, if there is an obvious change-

point at, say, time point 57, then the probability of the

last change being before that (e.g., time point 15) is

zero. The definition of ‘‘obvious’’ is controlled by the

penalty parameter—a larger value means that a change

has to be larger to be considered obvious. If obvious

changes occur throughout the data, then this dramati-

cally reduces the computational time.

To evaluate the approach, we generate synthetic

series from each one of the eight models considered

with parameters mimicking the GMST and PDO. For

reproducibility, the parameters used are presented in

Table A1.

APPENDIX B

Choice of Parameters for BMCpt

Hyperparameters for the prior distributions of the

regression parameters and variance used with BMCpt

are set following previous recommendations (Ruggieri

2013). We set the variance scaling hyperparameter for

the multivariate normal prior on the regression param-

eters to 0.01. The hyperparameters for the variance

prior, that is, the prior variance s2
0, is set to the variance

of the dataset being used. As for the pseudo–data point

of variance n0, which is recommended to be,25%of the

minimum segment length (Ruggieri 2013), we vary this

parameter between 0 and 2.5 to find the value that op-

timizes the number of changepoints detected (Fig. B1).

We focus on the number of changepoints here, as these

parameters can affect the number of changepoints

detected, but not the distribution of their positions

(Ruggieri 2013). Tuning for n0 is performed for the four

cases without AR(1) for which BMCpt should perform

well at identifying the true underlying model. For the

cases scenario with no changepoints (i.e., Mean and

Trend), the value of n0 does not have any impact on the

FIG. D1. Number of changepoints detected with EnvCpt, STARS, and BMCpt with prewhitening across 1000

replications for (a) a linear trend with AR(1), (b) a trend with a changepoint in the regression parameters and AR

(1), (c) a constant mean with AR(1), and (d) two changepoints in the mean with AR(1). The prewhitening is

performed using the using the MP and INV approaches with a subsample size of 20.
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number of changes detected as none are detected for all

values of n0, thus these results are not shown here. As

illustrated in Fig. B1a, all values of n0 in the simulation

scenario of a trend with changepoints (Trend cpt) lead

to a low detection of the correct number of change-

points, but the most substantial improvement is ob-

tained with a value of 0.25. In the case scenario of mean

changepoints (Mean cpt), the correct number of change-

points is obtained at a highest frequency for any values of

n0 (Fig. B1b). Setting n0 to 0 leads to no changepoints.

Therefore, a value of 0.25 has been used subsequently in

all simulations. Finally, the maximum number of change-

points is set to 10.

APPENDIX C

Tuning of Parameters for Prewhitening

To reduce false alarms due to the presence of auto-

correlation, prewhitening of the time series was used

with STARS andBMCpt (Rodionov 2006). This consists

of removing the first-order autocorrelation in the time

series such as

x0t 5 x
t
2 r̂cx

t21
, t5 2, . . . , n , (C1)

where xt and x0t represent the raw and prewhitened

variable at time t, respectively; n is the length of the raw

time series; and r̂c represents the bias-corrected first-

order autocorrelation estimate. In a practical situation,

the first-order autocorrelation used in prewhitening is

unknown (andmay also change over time). To obtain an

estimate, we used two approaches developed by Marriott

and Pope (1954; MP) and Orcutt and Winokur (1969;

INV). The MP estimate is given by the following:

r̂c 5
(m2 1)r̂1 1

(m2 4)
, (C2)

where r̂ is the median of the first-order autocorrelation

calculated in each subsample of size m. The INV esti-

mate uses four iterative corrections:

r̂c,1 5 r̂1
1

m
(C3)

r̂c,k 5 r̂c,k21 1
jr̂c,k21j

m
, k5 2,3; 4: (C4)

FIG. D2. Density of changepoint timings detected using EnvCpt, STARS, and BMCpt with prewhitening for the

two simulated scenarios with changepoints and AR(1) across 1000 replications for (a) a trend with a changepoint

in the regression parameters and AR(1) and (b) two changepoints in the mean with AR(1). The prewhitening is

performed using the using the MP and INV approaches with a subsample size of 20.

TABLE E1. Results (p value) of the Lilliefors (L) andDurbin–Watson (DW) tests applied to the residuals of the best-performingmodels fitted to

the GMST [Trend cpt and Trend cpt 1 AR(1)] and PDO datasets [Mean 1 AR(1)]. An asterisk indicates significance at the 1% critical level.

Model Test

Data

HadCRUT4 HadCRUT4krig BEST MLOST GISTEMP PDO

Trend cpt L 0.50 0.50 0.29 0.39 0.12 —

DW ,0.001* ,0.001* ,0.001* ,0.001* ,0.001* —

Trend cpt 1 AR(1) L 0.39 0.50 0.33 0.50 0.08 —

DW 0.53 0.25 0.19 ,0.001* 0.66 —

Mean 1 AR(1) L — — — — — 0.50

DW — — — — — 0.68
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FIG. E1. (left) Autocorrelation and (right) partial autocorrelation function of the residuals

from the Trend cpt 1 AR(1) model fitted to the global-mean surface temperature datasets for

(a) HadCRUT4, (b) HadCRUT4krig, (c) BEST, (d) MLOST, and (e) GISTEMP. Dashed lines

represent the 95% confidence intervals on the partial autocorrelation.
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FIG. E2. (left) Autocorrelation and (right) partial autocorrelation function of the residuals

from theTrend cptmodel fitted to the global-mean surface temperature datasets for (a)HadCRUT4,

(b) HadCRUT4krig, (c) BEST, (d) MLOST, and (e) GISTEMP. Dashed lines represent the 95%

confidence intervals on the partial autocorrelation.

9538 JOURNAL OF CL IMATE VOLUME 31



To find an optimal value for the subsample size used in

prewhitening, we conduct simulations over a range of

subsample sizes using the Mean cpt 1 AR(1) scenario.

This is done with both MP and INV approaches for pre-

whitening using subsample sizes of 5, 10, 20, 30, 50, and 75

and illustrated in Fig. C1. With both prewhitening ap-

proaches, very large (75) and very small (5) subsample size

lead to a reduced rate of true positives and increased false

negatives toward the end of the time series. A subsample

size of approximately 20 is shown optimal here, which is

smaller than the distance between the two shifts (28 years).

When the number and location of changes is unknown, the

choice of this parameter is rather arbitrary and can have

substantial effect on the results (Fig. C1).

APPENDIX D

Results Obtained after Prewhitening the
Synthetic Data

For comparison, we apply prewhitening using both

MP and INV in all simulations with both STARS and

BMCpt and with a subsample size of 20, as chosen after

optimization (Fig. C1). Figure D1 presents the number

of shifts detected for the four simulation cases with AR

(1). For the two cases with no shifts, Trend1AR(1) and

Mean1AR(1), BMCpt with prewhitening and EnvCpt

are equivalent. The number of shifts detected is reduced

for STARS, but there is still a substantial rate of false

detection. This is surprising, as STARS should be able to

return a no-change model for the Mean 1 AR(1) case,

but detects changes in over 34% of the series. Never-

theless, the rate of false detection is reduced with pre-

whitening but remains substantial with STARS. In presence

of changepoints [cases Trend cpt1AR(1) andMean cpt1
AR(1)], the prewhitening deteriorates BMCpt perfor-

mance, while it significantly improves STARS ability to

detect shifts in the mean.

Figure D2 presents density estimates of the locations

of the identified changepoints for synthetic series that

were generated with changepoints and AR(1). For the

case Trend cpt 1 AR(1), while the peaks of the true

changes have a similar density to the EnvCpt method,

STARS and BMCpt tend to detect spurious changes

toward the end of the series. In presence of mean

changepoints, EnvCpt and both STARS and BMCpt

TABLE E2. Comparison of the best EnvCpt models [Trend cpt and Trend cpt1AR(1)] with models including an AR(2) process on the

GMST datasets. AIC differences D between the model with the smallest AIC and the other models are presented. The model with the

smallest AIC has a D of 0 and is indicated in boldface.

Model

Data

HadCRUT4 HadCRUT4krig BEST MLOST GISTEMP

Trend cpt 0.0 1.5 16.8 26.0 13.4

Trend cpt 1 AR(1) 7.8 0.0 0.0 0.0 0.0

Mean 1 AR(2) 41.6 37.1 37.5 34.4 35.5

Trend 1 AR(2) 30.5 25.0 24.8 25.4 25.2

Mean cpt 1 AR(2) 48.0 47.7 42.1 37.8 40.5

Trend cpt 1 AR(2) 42.5 37.0 36.8 37.4 2.5

FIG. E3. (left) Autocorrelation and (right) partial autocorrelation function of the residuals

from theMean1AR(1)model fitted to the PDO.Dashed lines represent the 95%confidence

intervals on the partial autocorrelation.
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applied with prewhitening succeed at identifying the

correct timing of the changepoints. While the densities

in Fig. D2b give the impression that BMCpt is per-

forming better than STARS and EnvCpt with higher

peaks, this is due to fewer changes being detected with

this approach (see Fig. D1d).

APPENDIX E

Goodness-of-Fit of theGMST and PDOBestModels

To validate the models selected, we also verify their

underlying assumptions of normality and independence

of the residuals with additional testing (Table E1). In all

cases, the normality assumption of the residuals is re-

spected but not the independence for all Trend cpt fits

on the GMST and the MLOST Trend cpt 1 AR(1) fits.

To further investigate the autocorrelation structure of

the residuals for both the Trend cpt and Trend cpt 1
AR(1) fits, the autocorrelation and partial autocorrelation

functions are presented in Figs. E1 and E2, respectively.

The autocorrelation and partial autocorrelation functions

are consistent with the tests of independence presented

in Table E1: The residuals of the Trend cpt 1 AR(1)

fits are independent overall (except for the MLOST

dataset; Fig. E1), while the residuals of the Trend cpt fit

FIG. F1. Number of changepoints detected with EnvCpt with either the AIC or the BIC for each simulated scenario across 1000

replications for (a) a linear trend, (b) a linear trend with AR(1), (c) a trend with three changepoints in the regression parameters, (d) a

trend with a changepoint in the regression parameters and AR(1), (e) a constant mean, (f) a constant mean with AR(1), (g) two

changepoints in the mean, and (h) two changepoints in the mean with AR(1).

TABLE F1. BIC differences for the eight models within EnvCpt fitted to theGMST and PDOdatasets. Themodel with the smallest BIC

has a D of 0 and is indicated in boldface. Dashes indicate changepoint models that did not detect changepoints, as the model fit is the same

as the equivalent model without changepoints.

Model

Data

HadCRUT4 HadCRUT4krig BEST MLOST GISTEMP PDO

Mean 325.8 350.9 364.7 320.2 306.3 39.1

Mean 1 AR(1) 19.5 22.0 21.3 18.3 21.0 0.0

Trend 138.6 143.6 131.6 134.6 119.4 43.9

Trend 1 AR(1) 7.8 10.3 7.7 8.6 10.0 3.3

Mean cpt 39.1 51.9 40.9 67.1 49.0 30.7

Mean cpt 1 AR(1) — — — — — —

Trend cpt 10.8 20.2 23.0 51.5 19.2 33.8

Trend cpt 1 AR(1) 0.0 0.0 0.0 0.0 0.0 —
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are not (Fig. E2). The autocorrelation and partial au-

tocorrelation functions for the HadCRUT4 and Had-

CRUT4krig datasets (Figs. E2a,b) reveal potential

presence of an AR(2) process in the residuals. There-

fore, our models were also fitted with an AR(2) in the

background, such as Mean 1 AR(2), Trend 1 AR(2),

Mean cpt 1AR(2), and Trend cpt 1AR(2). Table E2

presents the AIC differences of the models fitted with a

background AR(2) as opposed to the previously se-

lected models [Trend cpt and Trend cpt 1 AR(1);

Table 1]. These results show that despite a potential

AR(2) structure in the residuals, there is no benefit from

adding an extra parameter to explain the autocorrelation

structure. TheAIC differences for themodels including an

AR(2) are substantially larger than those of the best

models selected, that is, mostly larger than 10, indicating

essentially no evidence for choosing these models instead.

There is one exception for the GISTEMP dataset, for

which the Trend cpt1AR(2) model has a D of 2.5, which

suggests some evidence for this model being the best, but

not enough to be at play. Overall, for the five GMST da-

tasets, the Trend cpt 1 AR(1) fit provides the smallest

AIC and meets the underlying assumptions of the model.

As for thePDO, themodelwith the smallestAIC [Mean1
AR(1)] respects the underlying assumptions of normality

and independence (Fig. E3; Table E1).

APPENDIX F

Sensitivity to the Model Selection Criterion

To evaluate the sensitivity to the choice of model se-

lection criterion, we compare the results obtained on all

sets of synthetic series with EnvCpt using the Bayesian

Information Criterion (BIC; Fig. F1). In most cases, the

EnvCpt performance is slightly improved when using

the BIC, except for the Mean cpt 1 AR(1) case for

which the BIC detects no changepoints in strong ma-

jority, while there are two.

We also calculate the BIC for the eight models fitted

withinEnvCpt to theGMSTandPDOdatasets (TableF1).

For all GMST datasets, the model with the smallest BIC

is Trend cpt1 AR(1). This result is slightly different than

the results obtained using the AIC for the HadCRUT4

dataset for which the Trend cpt model has the smallest

AIC (Table 1). However, we discarded the Trend cpt

model for the HadCRUT4 dataset because of the

presence of autocorrelation in the residuals (Table E1;

Figs. E1, E2) and concluded that the second-best model,

Trend cpt1AR(1), was more appropriate. Thus, the best

models identified using the BIC are consistent with the

results obtained with the AIC (Fig. 3).
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