1 DECEMBER 2018

BEAULIEU AND KILLICK

Distinguishing Trends and Shifts from Memory in Climate Data

CLAUDIE BEAULIEU

Ocean Sciences Department, University of California, Santa Cruz, Santa Cruz, California,
and Ocean and Earth Science, University of Southampton, Southampton, United Kingdom

REBECCA KILLICK

Department of Mathematics and Statistics, University of Lancaster, Lancaster, United Kingdom

(Manuscript received 19 December 2017, in final form 14 September 2018)

ABSTRACT

The detection of climate change and its attribution to the corresponding underlying processes is challenging
because signals such as trends and shifts are superposed on variability arising from the memory within the
climate system. Statistical methods used to characterize change in time series must be flexible enough to
distinguish these components. Here we propose an approach tailored to distinguish these different modes of
change by fitting a series of models and selecting the most suitable one according to an information criterion.
The models involve combinations of a constant mean or a trend superposed to a background of white noise
with or without autocorrelation to characterize the memory, and are able to detect multiple changepoints in
each model configuration. Through a simulation study on synthetic time series, the approach is shown to be
effective in distinguishing abrupt changes from trends and memory by identifying the true number and timing
of abrupt changes when they are present. Furthermore, the proposed method is better performing than two
commonly used approaches for the detection of abrupt changes in climate time series. Using this approach,
the so-called hiatus in recent global mean surface warming fails to be detected as a shift in the rate of tem-
perature rise but is instead consistent with steady increase since the 1960s/1970s. Our method also supports
the hypothesis that the Pacific decadal oscillation behaves as a short-memory process rather than forced mean
shifts as previously suggested. These examples demonstrate the usefulness of the proposed approach for
change detection and for avoiding the most pervasive types of mistake in the detection of climate change.
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1. Introduction

The pace of climate change is not smooth; it varies
year-to-year and decade-to-decade, naturally. Climate
records contain shifts or “‘abrupt changes” due to in-
ternal variability and natural forcings (volcanic and
solar) superimposed on the long-term anthropogenic
climate change trend (Fyfe et al. 2016; Lean and Rind
2009; Trenberth 2015). For example, the global annual-
mean surface temperature (GMST) time series exhibits
periods of warming separated by a long pause from ap-
proximately the mid-1940s to the mid-1970s (Kellogg
1993) and potentially a second and shorter one, al-
though highly debated, since the late 1990s/early 2000s
(Drijfhout et al. 2014; Karl et al. 2015; Trenberth 2015;
Trenberth and Fasullo 2013). Whether this last so-called
hiatus can be characterized as a slowdown in the rate of
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climate change is the subject of active debate (Medhaug
et al. 2017) and has led to a fast-growing number of sci-
entific publications (Lewandowsky et al. 2016, 2015).
Discrepancies between the continued warming in models
and apparent slowdown of warming in observations since
the late 1990s/early 2000s have been suggested to arise
from misrepresentations of forcing or natural variability in
models (Huber and Knutti 2014; Meehl et al. 2014; Risbey
et al. 2014; Santer et al. 2014; Schmidt et al. 2014) or from
data biases in observations (Karl et al. 2015), and such
change would unlikely be persistent (Knutson et al. 2016).
However, few authors have addressed the problem from a
statistical-change-detection perspective (Cahill et al. 2015;
Rahmstorf et al. 2017; Rajaratnam et al. 2015). From this
angle, the main question is whether the GMST trend has
changed in the late 1990s/early 2000s and whether a sig-
nificant slowdown of warming can be detected.

The Pacific decadal oscillation (PDO) has been sug-
gested as a main driver of variability in the GMST
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increase (Trenberth 2015), with its cold phases corre-
sponding to periods of paused warming and warm phases
corresponding to GMST increase. The PDO has also
been suggested to be responsible for widespread eco-
system shifts in the North Pacific with repercussions on
the region’s fisheries (Mantua et al. 1997) and drought
effects of El Niflo—Southern Oscillation (ENSO; Wang
et al. 2014). Whether PDO shifting patterns arise from
internal variability or from a forced bistable behavior
has also triggered debate in the literature over the last
two decades (Mantua et al. 1997; Newman et al. 2016;
Rodionov 2006; Rudnick and Davis 2003) and has im-
plications for its predictability.

Statistical approaches to characterize change in time
series behaving as a superposition of several compo-
nents such as long-term trends, shifts (i.e., either in the
rate of change or between two stable states), and in-
ternal variability must be flexible enough to distinguish
these components. Internal variability is often charac-
terized by a short-memory process, in which the ocean
and other slow components of the climate system (e.g.,
ice sheets) respond slowly to random atmospheric
forcing, producing climate variability at a longer time
scale than the white noise atmospheric weather. This
mechanism is often referred to as “red noise” in the
climate literature (Frankignoul and Hasselmann 1977;
Hasselmann 1976; Vallis 2010). Natural fluctuations
caused by the internal memory can be large enough to
mask the long-term warming trend and create periods of
apparent slowdown, possibly akin to a ‘“‘hiatus,” as well
as exaggerate the warming trend for short periods,
which implies risk for ecosystems (Mustin et al. 2013).
Long-term trends and shifts above that level of short-
term memory should represent natural or external
forcings.

Climate science has typically put greater emphasis on
statistical model interpretability rather than flexibility
because focus is more on a system-level understanding
rather than prediction of single events (Faghmous and
Kumar 2014). Therefore, statistical approaches used to
quantify long-term change in climate time series typi-
cally assume the change is linear in time (Hartmann
et al. 2013) and may not allow for all features described
above in the same model, thus leading to five possible
misuses of statistics, which are illustrated in Fig. 1.

The first type of misuse can occur when characterizing
GMST changes (Seidel and Lanzante 2004), that is,
fitting a linear trend in presence of shifts in the mean or
shifts in trend (Fig. 1a), which can potentially bias the
estimated rate of change. A series of alternative piece-
wise linear models has been suggested to represent the
GMST time series including periods of warming sepa-
rated by a pause from the mid-1940s to 1970s (Seidel and
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Lanzante 2004). However, the performance of such
piecewise models to characterize change in the GMST
depends on their ability to identify the timings separat-
ing the intervals of different rates of warming. Advances
in statistics allow for identifying the timing of such
changes in time series using changepoint detection
(Beaulieu et al. 2012; Reeves et al. 2007), and these
approaches have recently been used to analyze the
GMST time series by fitting piecewise linear models to
objectively detect the timing of changes in the rate of
warming (Cahill et al. 2015; Rahmstorf et al. 2017;
Ruggieri 2013). More commonly in climate studies,
however, changepoint detection has been used to detect
only shifts in the mean of a time series, for example, by
applying the sequential f-test analysis of regime shifts
(STARS) approach (Rodionov 2004). This often leads
to the second type of misuse (Fig. 1b): fitting shifts in the
mean in presence of a background trend. Because the
null model of the STARS approach is a constant mean
and not a secular trend, shifts in the mean will tend to
provide a better fit to the trend than a constant mean.
As such, the method typically interprets a trend as a
“staircase” series of abrupt changes (Beaulieu et al.
2016). However, an approach based on model selection,
allowing one to distinguish shifts in the mean from a
background trend, can prevent the problem of confusing
different types of signals as per the first and second
misuses (Beaulieu et al. 2012; Reeves et al. 2007).

In addition to different types of signal that may be
confused, internal variability may also be misinterpreted
as a forced signal, for example, as a long-term trend or
mean shifts (Figs. 1¢,d). Patterns created by the internal
memory of the system challenge signal detection in
climate time series as they pose the risk to be mis-
interpreted as trends or shifts. The risk is greater in the
presence of short records (Wunsch 1999). The short-
term memory or red noise is often represented by a first-
order autocorrelation [AR(1)] process and complicates
signal detection as the risk of false alarms is increased
when using statistical techniques designed for inde-
pendent data (von Storch 1999; von Storch and Zwiers
1999). In trend detection, the internal variability can be
distinguished from a secular trend by fitting a regression
model containing a trend and AR(1) through general-
ized least squares (Chatfield 2003) or by adjusting the
sample size by the effective number of independent
observations, which is reduced in the presence of auto-
correlation (von Storch and Zwiers 1999), thus avoiding
the third misuse. As for detecting abrupt changes, some
methods have proposed approaches to distinguish
changepoints from autocorrelation using information
criterion and Monte Carlo methods (Beaulieu et al.
2012; Robbins et al. 2016) or prewhitening of the time
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FIG. 1. Five possible misuses of statistics when inferring changes in climate time series exhibiting a long-term
linear trend, shifts, or memory: (a) fitting a linear trend in presence of shifts in the mean or shifts in trend, (b) fitting
shifts in the mean in presence of a trend, (c) fitting a linear trend assuming independent errors (i.e., white noise) in
presence of autocorrelation, (d) fitting shifts in the mean assuming white noise in presence of autocorrelation, and

(e) fitting an AR(1) model in presence of mean shifts.

series (Robbins et al. 2016; Rodionov 2006; Serinaldi
and Kilsby 2016; Wang 2008) to prevent the fourth
misuse. Finally, as the natural variability is characterized
by an AR(1) process, it carries memory that offers short-
term predictability. Forecasting a time series using a
stationary AR(1) model when there is an underlying
trend and/or shifts in the mean is the fifth possible mis-
use (Fig. 1e) and will lead to poor predictions.

Our work is thus motivated by the need to distinguish
signals and internal variability in climate and environ-
mental time series, which is fundamental to better
understanding their behavior and predicting future
changes. We investigate the behavior of the GMST and
PDO time series (Fig. 2) by developing an approach that
fits a series of models to a time series and identifies the
most appropriate according to the Akaike information
criterion (AIC), which is twice the model likelihood
penalized by the number of parameters fitted. The
models involve combinations of a constant mean or a

trend, with a background of white noise or an AR(1)
process, and include the possibility of changepoints in
each model configuration so as to yield eight models in
total (Fig. 3). When a model with changepoints is con-
sidered, the number is estimated using an optimal seg-
mentation algorithm (Killick et al. 2012). We refer to
our approach as environmental time series changepoint
detection (EnvCpt) and have also created software
available as an R package on the Comprehensive R
Archive Network (CRAN; Killick et al. 2016). Details
on the methodology are provided in the next section. We
further demonstrate the appropriateness of the meth-
odology through a simulation experiment in which we
apply EnvCpt to synthetic time series mimicking signals
and noise observed in climate time series such as the
GMST and the PDO. We compare our approach to
two methodologies that have been used to investigate
changepoints in the GMST and PDO time series, re-
spectively. More specifically, we compare EnvCpt with
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FIG. 2. Datasets used in this study: (a) GMST from HadCRUT4, HadCRUT4krig, BEST,
MLOST, and GISTEMP and (b) the PDO.

the STARS methodology (Rodionov 2004), which has
been designed to detect mean changepoints and has
been used to investigate changepoints in the PDO, among
many other applications in the climate and oceanography
literature. We also compare EnvCpt with a Bayesian lin-
ear regression multiple changepoint-detection method
(BMCpt), which has been used to investigate change-
points in the GMST (Ruggieri 2013).

2. Methods
a. Data
We use five annual GMST datasets:

1) Hadley Centre/Climatic Research Unit, version 4
(HadCRUTH4), surface temperature dataset
The HadCRUT4 dataset (version HadCRUT.4.5.0.0;
available at http://www.metoffice.gov.uk/hadobs/
hadcrut4/data/current/download.html; Morice et al.
2012) comprises sea surface temperatures (SSTs) from
the Hadley Centre SST dataset, version 3 (HadSST3;
(Kennedy et al. 2011a,b), and Climatic Research Unit land
surface temperatures version 4 (CRUTEM4) (Jones et al.
2012). The dataset anomalies are relative to 1961-90.

2) HadCRUT}4 infilled by kriging (HadCRUT4krig)
We use a variation of the HadCRUT4 dataset in
which regions with no observations were infilled by
kriging, mainly across the Arctic, Antarctic, parts
of Africa, and other small areas (Cowtan and Way
2014; available at http://www-users.york.ac.uk/~
kdc3/papers/coverage2013/series.html). The refer-
ence period for the anomalies is the same as for
HadCRUT4.

3) Merged Land-Ocean Surface Temperature Analysis

(MLOST)
The MLOST dataset from the National Oceanic and
Atmospheric Administration National Centers for
Environmental Information (Smith et al. 2008; Vose
et al. 2012; available at https://www.ncdc.noaa.gov/
cag/time-series/global) combines land air tempera-
tures from the Global Historical Climatology Net-
work, version 3.3.0 (GHCNv3.3.0), and the Extended
Reconstructed Sea Surface Temperature, version 4
(ERSST.v4; Huang et al. 2015; Liu et al. 2015).
The anomalies are with respect to the 1971-2000
period.

4) Goddard Institute for Space Studies (GISS) Surface
Temperature Analysis (GISTEMP)
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FI1G. 3. Fit of the eight models in EnvCpt to five GMST datasets for (a) HadCRUT4, (b) HadCRUT4krig,
(c) BEST, (d) MLOST, (e) GISTEMP, and (f) the PDO. The tick marks indicate where changepoints were
detected. For each dataset, the AIC differences A between each model and the best-performing model
(smallest AIC) are also shown on a logarithmic scale adjusted so that the best model has a log difference of
zero and is indicated by a star. The dotted vertical lines indicate cutoffs of models’ evidence; there is sub-
stantial support for models with a difference below the red line and essentially no support for models with

differences above the black line.

The GISTEMP dataset also combines land and
SST temperatures from GHCNv3.3.0 and ERSST.
v4 but also includes the Scientific Committee on
Antarctic Research (SCAR) stations over Antarc-
tica (Hansen et al. 2010; available at http://data.
giss.nasa.gov/gistemp). The anomalies are relative
to 1951-80.

Berkeley Earth Surface Temperatures (BEST)

The BEST dataset (Rohde et al. 2013; available
at http://berkeleyearth.org/data) uses SST derived

from HadSST3 combined with CRUTEM4 land
air temperatures, and stations from the GHCN
network. Anomalies are given with respect to
1961-90.

We use the HadCRUT4, HadCRUT4krig, and BEST
annual GMST datasets from 1850 to 2016 and the
MLOST and GISTEMP annual GMST datasets from
1880 to 2016 (Fig. 2). These datasets share core common
observations but have been processed, bias corrected,
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and interpolated independently (Jones and Kennedy
2017; Jones 2016).

The PDO dataset used was derived as the leading
principal component of monthly sea surface temper-
ature in the North Pacific (downloaded from http://
jisao.washington.edu/pdo/PDO.latest; Mantua et al.
1997; Zhang et al. 1997). Annual means from 1901 to
2016 were calculated from the monthly values as a
mean from January to December for each year and
presented in Fig. 2.

b. EnvCpt description

EnvCpt fits eight models often used to represent
climate and environmental time series and selects
which one provides the best fit to represent the time
series. The simplest models for the time series assume
that the series is well represented by either a constant
mean or a linear trend in addition to a background
white noise. These simple models are also fitted
superposed to an AR(1), leading to four types of
models without changepoints. Then, models including
changepoints in all model parameters (mean or
trend, variance and autocorrelation) are also fitted,
leading to a total of eight models that are described
below:

1) A constant mean (Mean),

y,=unte, 1

where y, represents the time series, ¢ is the time, u is
the mean, and ¢, is the white noise errors, which are
independent and identically distributed following
a normal distribution with a mean of zero and
variance o

2) A constant mean with first-order autocorrelation
[Mean + AR(1)],

y,=mtoy_, te, ()

where ¢ is the first-order autocorrelation coefficient
3) A linear trend (Trend),

y,=A+Bt+e, 3)
where A and B represent the intercept and trend
parameters, respectively

4) A linear trend with first-order autocorrelation
[Trend + AR(1)],

y,=A+Bt+oy,_, te, @)
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5) Multiple changepoints in the mean (Mean cpt),

m te, I=c
®, te, ¢ <t=gc,

y[: . . > (5)
p,m-i-er, cm71<t<n

where w; ..., u, represent the mean of each of
the m segments with variance o?, ..., 02, respec-
tively; ¢y, ..., ¢y—1 the timing of the changepoints
between segments; and n is the length of the
time series

6) Multiple changepoints in the mean and first-order
autocorrelation [Mean cpt + AR(1)],

Mty te, t=c
Byt @y, te, ¢ <I=c
yt: . . > (6)

Mo + @Y1 + e, C, 4 <t=n

where ¢y, ...
each segment

7) A trend with multiple changepoints in the regression
parameters (Trend cpt),

, ¢,, represent the autocorrelation in

A+ Btte, t=c,
A, + Byt +e, o <t=g,

yl: . . ’ (7)
A, tBtte, ¢, <t=n

where Ay, ..., A, and By, ..., B,, represent the in-
tercept and trend in each segment

8) A trend with multiple changepoints in the regression
parameters and first-order autocorrelation [Trend
cpt + AR(1)],

A +Bit+oy,_ te, t=c
A, B+, te, o <t=c
= : : ®)

Am +/3mt+ 0V, te, ¢, <t=n

The theoretical parameter ranges are real numbers for
the means, trends, and intercepts; positive real numbers
for the variances; [—1, 1] for first-order autocorrelation
coefficients; and [ p, n — p] for the changepoint timings
with p parameters in the model form. The methodol-
ogy considers all possible parameters and number of
changes across the eight models.
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Each model is fitted according to maximum likeli-
hood estimation. For the changepoint models, we find
the number and location of changepoints using the
pruned exact linear time (PELT) algorithm (Killick
et al. 2012), which identifies changepoints by per-
forming an exact search considering all options for
any possible number of changes (varying from 1 to the
maximum number of changepoints given the set
minimum segment length). The search strategy is ex-
act with a computational cost that is linear in the
number of data points. The PELT method is used in
combination with the modified Bayesian information
criterion (MBIC) as the penalty function (Zhang and
Siegmund 2007) to select the optimal number of
changepoints, as this approach balances the overall fit
against the length of each segment. Hence, it naturally
guards against small segments unless it produces a
significantly improved fit. The PELT methodology
may choose no changepoint as the best model in which
it reduces to the same likelihood as the no-change
equivalent model. The model selection is automated
using the AIC, which penalizes the model likelihood
by the number of parameters fitted for each model
considered (Akaike 1974). The EnvCpt package pro-
vides the likelihood and number of parameters fitted
for each model. As such, any other criteria or metric
based on the likelihood can be used for the model
selection. However, we use the MBIC for determining
changepoints as the AIC has been shown to system-
atically overestimate the number of changes (Haynes
et al. 2017). The pseudo algorithm for EnvCpt and
additional details about PELT are presented in
appendix A.

The best model is selected as the one with the
smallest AIC. While the choice according to the mini-
mum AIC does not provide a measure of uncertainty,
the AIC differences A; between the best model and the
remaining models can be used to evaluate plausibility
of the models fitted:

A, = AIC, - AIC, , | 9)

where i denotes the models fitted (i = 1,. . .,8). The larger
the difference, the less plausible a model is, given the
data and models considered (Burnham and Anderson
2002). As a rule of thumb, a A; of 0-2 provides sub-
stantial support for model i, while A; of 4-7 has consid-
erably less support, and essentially none if the difference
is larger than 10 (Burnham and Anderson 2002). While
comparing the differences to a rule of thumb is useful to
identify a subset of models at play, we can also quantify
the plausibility of the models fitted given the data using
Akaike weights:
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_exp(—0.54)

i~ 8
Y exp(—0.54 )
r=1

(10)

The weights w; represent the evidence in favor of model
i being the best model given the data and the set of eight
models fitted.

c. Simulation of synthetic series

Synthetic series mimicking typical features observed
in GMST and PDO time series issued from the eight
general models described in the previous section were
generated to assess the performance of EnvCpt. We
generated a set of synthetic series inspired by the GMST
record with a total of 166 years that corresponds to the
four models including a trend component fitted to the
GMST (Fig. 3) with 1) a long-term trend; 2) a long-term
trend with first-order autocorrelation; 3) a trend with
three changepoints in 1906, 1945, and 1976; and 4) one
changepoint in the trend and autocorrelation in 1962.
We also generated synthetic time series inspired by the
PDO with a length of 116 years to represent the com-
peting models suggested to characterize the PDO be-
havior: 1) mean changepoints in 1948 and 1976 with or
without a background of AR(1) (Rodionov 2004, 2006)
and 2) first-order autocorrelation model (Newman et al.
2016). For completeness, the constant mean model used
here represents a “null”” model for the two hypotheses.
Figure 4 presents the eight cases of synthetic series
generated to mimic the GMST and PDO. The specific
parameters used to simulate the synthetic series are
presented in appendix A (Table Al). For each category, a
total number of 1000 synthetic series were generated and
analyzed.

d. Comparison with STARS

We compare our approach to STARS (Rodionov
2004, 2006) using the code available online (see http://
www.climatelogic.com/download). This approach has
been used previously to investigate the presence of
mean shifts in the PDO (Rodionov 2004, 2006). STARS
uses a binary segmentation algorithm that identifies
changes sequentially. As such, this procedure finds the
most likely changepoint, then splits the data at the
change if it is significant and searches for further changes
in each segment. This procedure is repeated iteratively
until no more changes are detected or the segments are
becoming smaller than the set minimum segment length.
The decision rule for the presence of changepoints is
based on a ¢ test between segments (Rodionov 2004). A
minimum segment length default of 10 observations
and a critical level of 5% were used in the present study.
Thus, we set the same default minimum segment length
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FIG. 4. Synthetic time series example from each simulation scenario case for (a) a linear trend, (b) a linear trend
with AR(1), (¢) a trend with three changepoints in the regression parameters, (d) a trend with a changepoint in the
regression parameters and AR(1), (e) a constant mean, (f) a constant mean with AR(1), (g) two changepoints in the
mean, and (h) two changepoints in the mean with AR(1). For each case, a total number of 1000 random replications

are simulated.

with EnvCpt to carry out the simulations, although other
options can be used. The STARS methodology is de-
veloped to detect shifts in the mean; however, we pres-
ent results for all considered models to demonstrate the

errors produced when trends are not accounted for
within the model. Furthermore, STARS is not originally
designed to handle autocorrelation, and prewhitening of
the time series has been suggested when its presence is
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suspected (Rodionov 2006). Thus, we also applied STARS ‘8 g 3 188838 | = ‘
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AR(1) model (probability of 0.02). = %‘ R S| + +555%
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TABLE 2. Trend and AR(1) parameter estimates for the model with trend changepoints and AR(1) [Trend cpt + AR(1)] in the five

GMST datasets.
Trend AR(1)

Dataset Cpt timing Before cpt After cpt Before cpt After cpt
HadCRUT4 1962 0.001 0.013 0.653 0.195
HadCRUT4krig 1972 0.001 0.018 0.635 0.083
BEST 1962 0.001 0.015 0.656 0.148
MLOST 1962 0.001 0.015 0.706 0.144
GISTEMP 1962 0.002 0.016 0.644 0.112

[Trend cpt + AR(1)] in 1962 or 1972 depending on the
source of the GMST data (Figs. 3b—e; Table 1). At that
time, the rate of warming increases and is accompanied
by a whitening of the GMST, that is, the AR(1) weakens.
The trend and AR(1) parameters associated with this fit
are presented in Table 2. The competing model (Trend
cpt) exhibits a flat mean until 1906, which was followed
by a warming period until 1945, then another period of
minimal temperature change that lasted until 1977, fol-
lowed by a warming trend until now (Figs. 3a,b). It must
be noted that all models fitted are valid if their un-
derlying assumptions of normality and independence of
the residuals are met. Overall, these assumptions are
verified under the Trend cpt + AR(1) fit, but not under
the Trend cpt model (Figs. E1, E2; Table E1; appendix E).
This further validates a background AR(1) and the oc-
currence of one changepoint in the GMST in 1962
or 1972, as opposed to several changes. The GMST has
also been suggested to follow a second-order autocor-
relation [AR(2)] model previously (Karl et al. 2000). We
find that while two datasets indicate a potential AR(2)
structure in the residuals (Figs. E2a,b; appendix E), the
fits are valid with an AR(1) (Fig. E1; Table E1; appendix E).
Furthermore, an AR(2) does not seem to improve the
likelihood of the model enough to be worth including as
all models with an AR(2) lead to substantially higher
AIC (Table E1; appendix E).

The only model detecting a changepoint in the late
1990s/early 2000s is the staircase model (Mean cpt), for
which there is essentially no evidence (ws = 0), given the
datasets and other models considered (Figs. 3a—¢). As
such, this result suggests that the most recent hiatus does
not emerge as a global signal but rather indicates that
the GMST rate of change has remained approximately
constant (linear) since the 1960s/1970s with some fluc-
tuations arising from the memory in the system.

As for the PDO, the best-fitting model is a constant
mean and autocorrelation [Mean + AR(1)] with a
probability of 0.56 (Table 1; Fig. 3f) and has valid un-
derlying assumptions (Fig. E3; Table E1). None of the
models including changepoints are considered at play, as
either no changepoints are detected [Mean cpt + AR(1)

and Trend cpt + AR(1)] or they are associated with
large AIC differences (Table 1). The Trend + AR(1)
model is the only competing model (Ay = 1.1; w4 = 0.44),
unveiling some uncertainty about the best way to char-
acterize PDO behavior. However, models including a
trend would be counterintuitive to represent PDO be-
havior (Newman et al. 2016).

b. Simulation study

EnvCpt was also applied to the eight different sets of
synthetic series generated. To emphasize the flexibility
of the methodology developed, we compare it with two
other approaches both detailed in the methods. It must
be noted that EnvCpt is developed to distinguish all
combinations of trends, changepoints, and autocorrela-
tion, and thus we expect it to overall outperform BMCpt
and STARS, which are both designed for more specific
features. Specifically, BMCpt was developed to detect
changes in a linear regression model, and it should thus
perform similarly to EnvCpt in presence of a constant
mean or trend, with or without changepoints (cases
Mean, Mean cpt, Trend, and Trend cpt). Correspond-
ingly, STARS was developed to detect mean shifts only
and should be performing in the simulation scenario
cases Mean and Mean cpt. Neither STARS nor BMCpt
were originally designed to handle a background of
autocorrelation. To work around that limitation, we also
apply the methods on the synthetic series with AR(1)
after prewhitening, which necessitates some parameter
tuning (see appendix D).

Figure 5 presents the number of shifts detected by
EnvCpt, STARS, and BMCpt in each simulation case.
The results demonstrate that EnvCpt correctly identifies
the number of changepoints at a higher frequency than
STARS and BMCpt in most synthetic series, although
BMCpt is equivalent in half of the cases. In presence
of a trend only, both EnvCpt and BMCpt succeed at
identifying no change (Fig. 5a). However, in presence
of three trend changepoints (Fig. 5Sc), EnvCpt detects
the three shifts at the highest frequency, while BMCpt
tends to interpret them as two shifts, instead. The rate
of false detection with BMCpt increases in presence of
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F1G. 5. Number of changepoints detected with EnvCpt, STARS, and BMCpt with prewhitening across 1000 replications for (a) a linear
trend, (b) a linear trend with AR(1), (c) a trend with three changepoints in the regression parameters, (d) a trend with a changepoint in the
regression parameters and AR(1), (e) a constant mean, (f) a constant mean with AR(1), (g) two changepoints in the mean, and (h) two
changepoints in the mean with AR(1). Overall, EnvCpt is closer to the true number of changepoints than STARS and BMCpt.

autocorrelation (Fig. 5b), illustrating misuse 3. In the sim-
ulation case Trend cpt + AR(1), EnvCpt and BMCpt are
equivalent (Fig. 5d) even though BMCpt is not designed to
handle autocorrelation. We attribute this result to the fact
that BMCpt can detect changes in the variance, thus in-
terpreting the changing AR(1) here as a change in variance.
Finally, in presence of mean shifts [cases Mean cpt and
Mean cpt + AR(1)], BMCpt tends to detect fewer shifts
than the true number of changepoints (Figs. 5g,h). Indeed,
when using a changepoint approach fitting a piecewise lin-
ear regression model in presence of mean shifts only, con-
secutive staircase mean shifts may be interpreted as a trend
as per misuse 1. Prewhitening reduces the rate of false de-
tection by BMCpt in the Trend + AR(1) scenario, but also
diminishes the power of detection for the Trend cpt +
AR(1) and Mean cpt + AR(1) cases (Fig. D1; appendix D).

STARS tends to overestimate the number of change-
points and frequently misidentifies an underlying trend
as a series of shifts, illustrating misuse 2 (Figs. Sa—d). In
the cases of a constant mean or changepoints in the mean,
STARS should be equivalent to EnvCpt, but tends to
detect additional spurious shifts (Figs. Se,g). This is par-
ticularly surprising for the Mean case (Fig. 5e), as the
STARS methodology should be able to return a no-
change model in this case but rather detects changes in

over 34% of the series. However, although a 5% critical
level is used when multiple shifts are present, this does not
correspond to a 5% critical level for the overall segmen-
tation given that the test is applied repetitively. Ap-
proaches based on a maximal type ¢ test or F test, which
accounts for the fact that the test statistic is calculated for
each potential changepoint timing in the time series, re-
duce false alarms to the expected level (Lund and Reeves
2002; Wang et al. 2007). The tendency for spurious de-
tection with STARS is aggravated in presence of auto-
correlation (Fig. 5f), where STARS detects changes
in 96% of the series when none should be detected,
illustrating misuse 4. The rate of false detection is re-
duced with prewhitening and the detection power im-
proved for the Mean + AR(1) and Mean cpt + AR(1)
cases (Fig. D1; appendix D).

While the number of positive and false-positive changes
detected by a given model provides a picture of the
performance, it does not indicate whether the change-
points are correctly localized in the time series. Figure 6
presents density estimates of the locations of the iden-
tified changepoints for synthetic series that were gen-
erated with changepoints. This again demonstrates
that EnvCpt outperforms STARS and BMCpt over-
all. EnvCpt clearly identifies the location of the trend
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FIG. 6. Density of changepoint timings detected using EnvCpt, STARS, and BMCpt for the four simulated

scenarios with changepoints across 1000 replications for (a) a trend with three changepoints in the regression
parameters, (b) a trend with a changepoint in the regression parameters and AR(1), (c) two changepoints in the
mean, and (d) two changepoints in the mean with AR(1). Overall, EnvCpt identifies correctly the true changepoint
locations, while STARS and BMCpt may detect changepoints at timings when none were introduced in the syn-

thetic series in presence of trend changepoints.

changepoints, while both BMCpt and STARS tend to
detect spurious changes between the true changepoints
(Fig. 6a), especially toward the end of the series with
STARS (Figs. 6a,b,d). The three methods are equivalent
in detecting the location of the mean changepoints
(Fig. 6¢). It must be noted that the height of the density
peaks may suggest that BMCpt is better performing in
the Mean cpt + AR(1) scenario, but this is due to fewer
changes being detected with this approach (Fig. Sh). The
density and number of changepoints should be consid-
ered together.

4. Discussion

Our results suggest that the GMST rate of change
has changed once in 1962 or 1972 and has remained

approximately constant since then with fluctuations due
to the presence of memory in the system. Furthermore,
we find that the GMST is “whitening’’ around that time;
that is, the AR(1) parameter weakens. This result is
consistent across most datasets with high evidence
(Table 1). Our GMST characterization is different from
previous parametric changepoint analysis of the global
temperature record (Cahill et al. 2015; Rahmstorf et al.
2017; Ruggieri 2013) that suggested the presence of
three changepoints in the GMST rate of warming in the
1900s, 1940s, and 1970s. The main difference lies in the
treatment of autocorrelation: Our approach formally
takes into account the autocorrelation by the means of
an AR(1). Indeed, the optimal fit of the Trend cpt model
for the HadCRUT4 dataset (Fig. 3a), which does not
take account of AR(1), detects three changepoints as in



1 DECEMBER 2018

previous studies. However, autocorrelation is present in
the residuals such that the underlying assumption of
independent residuals is violated under the Trend cpt
model. The timings of changepoints under this model
setting (Trend cpt) are not consistent across all
GMST datasets, signaling additional uncertainty. If the
Bayesian information criterion (BIC; Schwarz 1978) is
used to select the best model instead of the AIC, the
Trend cpt + AR(1) model is selected for all datasets
(Table F1). We therefore argue that the Trend cpt
model should not be used without AR(1) to characterize
the GMST. The GMST has also been suggested to fol-
low an AR(2) model previously (Karl et al. 2000). Here
we find that an AR(2) does not improve the likelihood
of the model enough to be worth including as the
noise term (Table E1; appendix E). Previous work has
also suggested the presence of long-term memory in sur-
face temperature records (e.g., Franzke 2012; Lgvsletten
and Rypdal 2016), as opposed to the short-term memory
detected here. In presence of long-term memory, the au-
tocorrelation function will not decay exponentially as ob-
served here but rather decays as a power law such that it
does not reach zero (Yuan et al. 2015). While we do not
find long-term memory in the residuals of the five GMST
records analyzed here, we acknowledge that its potential
presence presents a risk to misinterpret it as a trend or an
abrupt change with EnvCpt, but longer records are likely
needed to make this distinction (Poppick et al. 2017).

Consequently, our results suggest that the changepoints
previously detected in the 1900s and 1940s may not be
unusual given the background memory. These timings also
coincide with the period of highest uncertainty in SST
measurements due to corrections applied to account for
changes of instrumentation (Jones 2016; Kent et al. 2017;
Thompson et al. 2008). Despite different results due to
different changepoint-detection approaches, we do agree
with previous studies (Cahill et al. 2015; Rahmstorf et al.
2017; Ruggieri 2013) that the most recent hiatus in GMST
does not emerge as a global signal, regardless of whether
or not AR(1) is considered. Hence, the only model fitted
that contains a changepoint in the late 1990s/early 2000s
is a staircase in the GMST (Mean cpt) and that model fit is
rendered unlikely by its large AIC values (Fig. 3).

It must be noted that the five datasets employed in this
study are not independent; they all use in part the same
input data for the land and ocean but employ different
methodologies for correcting biases and inhomogenei-
ties and for interpolating (Jones 2016). As such, the
similar results obtained with the five datasets do not
provide independent pieces of evidence that a change-
point took place in 1962 or 1972 but rather provides a
measure of the uncertainty arising from the different
approaches used to create these datasets.
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To our knowledge, the whitening of the GMST has
not been described in previous studies because meth-
odologies able to detect shifts in the autocorrelation,
such as EnvCpt, have not been applied to GMST data-
sets before. The sudden decrease in memory detected
here could be due to changes in SST measurements, as
the timing marks the start of a period of SST measure-
ments obtained from a more diverse observing fleet and
reduced bias (Kent et al. 2017; Thompson et al. 2008).
Future studies should investigate the regions respons-
ible for the changepoint in GMST and investigate the
underlying causes.

As for the PDO, we show that a model with a flat
mean and first-order autocorrelation provides the
best fit (Fig. 3f), which is in agreement with previous
studies (Newman et al. 2016; Rudnick and Davis 2003).
Conversely, a previous study has interpreted the PDO
as a series of shifts in the mean in the 1940s and 1970s,
superposed to an AR(1) (Rodionov 2006), which was
taken as support for the hypothesis of a bistable be-
havior. When focusing on a shorter period of time, the
1970s shift was also suggested to emerge from the
background of autocorrelation, although the authors
questioned the robustness of this result and emphasized
the need of a methodology such as the one presented
here (Beaulieu et al. 2016). Our new methodology
formally compares the two statistical representations
[AR(1) process vs bistability with mean shifts] of the
PDO by considering them objectively, and we conclude
that it is best modeled as autocorrelation only, without
shifts. This result is consistent if the BIC is used to
select the best-performing model instead of the AIC
(Table F1). Memory in the PDO can offer short-term
predictability a few years ahead, depending on the
strength of the first-order autocorrelation. Specifically,
the first-order autocorrelation of 0.55 in the PDO time
series analyzed here translates into a decorrelation time
of 3.5 years (von Storch and Zwiers 1999) after which
the current PDO value will be “forgotten.” This pre-
dictability could be key for management, as PDO pat-
terns have widespread repercussions and have been
suggested to be responsible for ecosystem regime shifts
in the North Pacific and regional droughts (Mantua et al.
1997, Wang et al. 2014). More recently, it has been
suggested that the PDO is “reddening’ at the monthly
time scale; that is, the AR(1) is increasing as a sign of
critical slowing down (Boulton and Lenton 2015; Lenton
et al. 2017). We do not detect this feature here, but this is
not surprising since our approach is not designed to
detect a trend in autocorrelation and has been applied at
the annual time scale.

As the PDO and GMST records become longer, the
best-fitting model may change. More precisely, EnvCpt
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is expected to select the true underlying model and de-
tect changes more accurately as the number of obser-
vations increase (Killick et al. 2012).

The simulation study demonstrates the advantage
of a single comprehensive method to avoid five misuses
of statistics in analyzing climate time series. Our ap-
proach reduces the number of presumptions about the
presence of trends, shifts, and autocorrelation in the
time series. In eight cases of synthetic series mimicking
features observed in the GMST and the PDO, our ap-
proach shows high skill in selecting the correct number
of changepoints in mean and slope and to locate the
changepoints correctly when present. A drawback is that
our conclusions are limited to the synthetic series gen-
erated for our simulation study. However, previous
simulation studies of changepoint-detection techniques
on synthetic series with shifts having a random tim-
ing and magnitude have been carried out before and
revealed expected features that are common to most
techniques. First, the signal-to-noise ratio matters the
most; that is, a shift with a large magnitude compared to
the background noise has a higher hit rate (Beaulieu
et al. 2012, 2008; Reeves et al. 2007; Wang et al. 2010).
Second, false alarms occur more often at the beginning
or end of the time series (Beaulieu et al. 2012). Third,
successive shifts that are near in time tend to be more
difficult to detect, especially if the magnitudes have the
same sign (e.g., an increase followed by another increase
is more difficult to detect than an increase followed by a
decrease; Beaulieu et al. 2008).

Here we focus on comparing EnvCpt to STARS and
BMCpt, which have been used to investigate changes in
PDO and GMST, respectively. Overall, our approach
clearly outperforms these two methods. This result was
to be expected as STARS and BMCpt only consider a
subset of the models fitted within EnvCpt. For example,
the STARS methodology is developed to detect shifts in
the mean only. In terms of the model fit, it is equivalent
to considering only the Mean and Mean cpt models fit-
ted with EnvCpt, thereby ignoring the possibility of and
misinterpreting underlying trends. BMCpt is more
flexible than STARS and designed to detect changes in
the parameters of a regression model, so is also equiv-
alent to fitting the models Trend and Trend cpt. Since
both of these approaches were developed for inde-
pendent data, all the models including an AR(1) are
excluded from STARS and BMCpt. While this issue can
be mitigated with well-tuned prewhitening (appendix
C), EnvCpt has the additional advantage of natively
supporting AR(1) detection without any parameter
tuning. In our attempts to tune the prewhitening for
STARS and BMCpt, we used a subsample size of 20,
which is smaller than the length between the shifts
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inserted in the synthetic series and shown to be opti-
mal (appendix C). Knowing a priori the minimum dis-
tance between two shifts is of great benefit for the
tuning, but the necessity of tuning is a great disadvan-
tage for STARS and BMCpt. That is, when the “truth”
is unknown the choice of parameter values for the
prewhitening is likely to induce errors (Fig. CI;
appendix C).

Several other methods have been proposed in the
literature to detect multiple changepoints in environ-
mental time series (e.g., Beaulieu et al. 2012; Gazeaux
et al. 2011; Lu et al. 2010; Reeves et al. 2007; Seidou and
Ouarda 2007; Tomé and Miranda 2004; Wang 2008),
although these models assume independent errors and
thus cannot distinguish signals from autocorrelation,
similar to STARS and BMCpt. To mitigate this issue,
one can use prewhitening techniques, although we show
that prewhitening has the disadvantage to necessitate
some parameters tuning. It has also been argued that an
approach that forces the lines of the piecewise linear
model to meet assuring continuity between the trends
is more physically plausible in the case of the GMST
(Cahill et al. 2015; Rahmstorf et al. 2017). Here we do
not force the lines of the piecewise linear model to meet,
but we find quasicontinuous trends for the GMST (see
Fig. 3). Imposing the continuity condition would restrain
our approach and make it unsuitable for the detection of
climate regime shifts, which are discontinuous and typ-
ically represented by abrupt changes in the mean. The
main advantage of the approach suggested here is its
flexibility and applicability to a wide range of climate
time series, as illustrated through the GMST and PDO.
The flexibility and breadth of applicability extends
beyond inferring changes in the mean and trend as
illustrated with these two examples. Hence, EnvCpt is
designed to detect changepoints in all parameters of the
models fitted, including changes in autocorrelation and
variance. There may be cases in which the variability and/
or dependence between successive observations are dif-
ferent after the start of a new regime in the climate system
or because of changes in measurements procedures.
Keeping the methodology as general as possible en-
sures these cases can also be analyzed with EnvCpt.

Correctly identifying climate change signals is central
to their understanding, as mechanisms responsible for
secular trends and abrupt changes are likely to be dif-
ferent (e.g., anthropogenic influence vs natural forc-
ings). However, abrupt changes can also be induced in
time series through gradual increase in anthropogenic
forcing when a critical threshold is crossed (Lenton
2011). Further investigation of the forcing-response
relationship can help identify threshold and nonlinear
dynamics, but correctly identifying the timing of an
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TABLE Al. List of parameters used to simulate the sets of synthetic series.

Variable Model Parameters

PDO (n = 116 years) Mean n=0.028,0=0.8
Mean + AR(1) n=0.049, 9 =0.522, 0 =0.8
Mean cpt wy =0222, w, = —0.652, u3; =0.271,¢; =49, ¢, =77, m=3,0=0.3
Mean cpt + AR(1) my =0.222, py = —0.652, s = 0271, ¢ = 9 = 03 =0.402,¢; =49, ¢, =77, m =3,

=03

GMST (n = 166 years) Trend A =-0513,8=0.005, 0 =0.1
Trend + AR(1) A=-0.128, 3 =0.001, ¢ = 0.756, c = 0.3
Trend cpt A =—0299, A, = —1.327, A5 = 0.171, Ay = —2.124, B, = —0.001, B, = 0.014,

B3 =-0.002, B, =0.016,c; =57,¢,=96,c3 =127, m=4,0 =04

Trend cpt + AR(1)

A =—0.112, 1, = —1.707, B; = —0.001, B, = 0.013, ¢, = 0.659, ¢, = 0.153, ¢; = 113,
m=2,0=0.1

abrupt change is a crucial first step (Andersen et al.
2009). Our EnvCpt approach is timely, as increasing
anthropogenic pressure on the climate system is ex-
pected to lead to more frequent occurrences of abrupt
changes in the physical climate system (Drijfhout
et al. 2015).

Our methodology is flexible, as it models different
types of signals and memory in the system. However, it
assumes that temporal changes in climate time series are
piecewise linear on a background of white noise or first-
order autocorrelation and that measurement errors are
random. While these assumptions are reasonable in
many instances, there may be cases of climate time se-
ries with additional complexities such as long-term
memory. Departures from these assumptions may
cause problems with the model selected as serious as
the five pervasive mistakes we are trying to avoid with
EnvCpt. Thus, it is recommended to combine the model
selection with an analysis of the residuals as done here
(appendix E) and to consider models that are physi-
cally plausible. Given that model selection is used with
EnvCpt, it can be easily extended to consider noise
terms with additional parameters such as autoregressive
moving-average (ARMA) models with higher-order

and alternative model forms (e.g., nonlinear). The
models could be extended to take into account co-
variables that may explain part of the variability in cli-
mate time series. For example, ENSO could potentially
explain part of the variability both in the GMST and
PDO analyzed here and contribute to reducing the un-
explained variability. When modifying the models used
here, one must keep in mind that the AIC weights are
dependent on the subset of models being compared.
As such, if additional models were being considered,
the probabilities of the eight models compared here
may change. Finally, another advantage of an approach
based on model selection is that it can be easily modified
to use a different information criterion such as the BIC,
but the results may vary. We illustrate this in appendix F
and show that using the BIC instead of the AIC in the
simulation study can slightly improve the results for
most cases of synthetic series, except for the Mean cpt +
AR(1) case, for which the results are worst (Fig. F1). We
refrain from making a universal recommendation here,
as there are many factors affecting the performance of
AIC and BIC (Burnham and Anderson 2002) with
considerations that are going beyond our simulation
study. This aspect should be the focus of future work.
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FIG. B1. Number of changepoints detected with BMCpt for the (a) Trend cpt and (b) Mean cpt scenario across
1000 replications. Changepoints were detected using a range of values for the pseudo—data point of variance pa-

rameter vy.
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FIG. Cl1. Density of changepoint locations for the changepoints in the mean and a background AR(1) [Mean
cpt + AR(1)] scenario across 1000 replications. Changepoints were detected with (a) STARS and (b) BMCpt
methodologies using a range of subsample sizes for prewhitening using the MP and INV approaches. A subsample
size of 20 is shown optimal here for both methods. For STARS, very large or very small subsample sizes lead to false
detections at the end of the time series. For BMCpt, very large or very small sample sizes lead to improved detection

of one shift to the detriment of the other.
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APPENDIX A

Technical Detail on the EnvCpt Approach and
Simulations

The EnvCpt approach fits eight different models to
the data and returns the fit and number of parameters
for each model. The pseudocode for the algorithm is
as follows:

EnvCpt Pseudo Algorithm

Inputs: Time series y;
msl = Minimum number of time points
between changes (default 5)
pen = Penalty for changepoint algo-
rithms (default MBIC)

Initialize: Let n = length of time
series
Fit: 1. Constant mean with independent

errors via maximum likelihood
2. Constant mean with AR(1) errors
via maximum likelihood

3. Linear trend with independent
errors via maximum likelihood

4. Linear trendwithAR (1) errorsvia
maximum likelihood

5. Constant mean changepoint model
with independent errors wvia PELT
algorithmwithmsl and pen options.
6. Linear trend changepoint model
with independent errors via PELT
algorithm with msl and pen options.
7. Constant mean changepoint model
with AR(1l) errors via PELT algorithm
withmsl and pen options.

8. Linear trend changepoint model
with AR(1) errors via PELT algorithm
with

msl and pen options.

Output: A matrix of likelihood values and
number of parameters for each model
fit. A
list containing the fit for each of
the eight models.

Using the output, one can compute an information cri-
terion to determine the model that best fits the data—in
this study we use the AIC. See appendix E for a sensi-
tivity study to the choice of criterion.

The PELT algorithm used in the EnvCpt procedure
is described mathematically in (Killick et al. 2012).
Contrary to binary searches, where the most likely
change is identified and the time series is split at that
point, the PELT algorithm solves the segmentation
problem exactly by performing a search considering all
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F1G. D1. Number of changepoints detected with EnvCpt, STARS, and BMCpt with prewhitening across 1000
replications for (a) a linear trend with AR(1), (b) a trend with a changepoint in the regression parameters and AR
(1), (c) a constant mean with AR(1), and (d) two changepoints in the mean with AR(1). The prewhitening is
performed using the using the MP and INV approaches with a subsample size of 20.

options for any possible number of changes (varying
from 1 to the maximum number of changepoints given
the set minimum segment length). This search is com-
pleted efficiently using a combination of dynamic pro-
gramming and pruning. Dynamic programming allows
us to consider the data sequentially from the start to the
end and monitor the location of the last changepoint
only, which reduces the computational time signifi-
cantly. However, as the size of the data grows, it re-
mains time consuming to monitor all potential last
changepoint locations. Thus, pruning is used to solve
this issue. For example, if there is an obvious change-
point at, say, time point 57, then the probability of the
last change being before that (e.g., time point 15) is
zero. The definition of “obvious’ is controlled by the
penalty parameter—a larger value means that a change
has to be larger to be considered obvious. If obvious
changes occur throughout the data, then this dramati-
cally reduces the computational time.

To evaluate the approach, we generate synthetic
series from each one of the eight models considered
with parameters mimicking the GMST and PDO. For
reproducibility, the parameters used are presented in
Table Al.

APPENDIX B

Choice of Parameters for BMCpt

Hyperparameters for the prior distributions of the
regression parameters and variance used with BMCpt
are set following previous recommendations (Ruggieri
2013). We set the variance scaling hyperparameter for
the multivariate normal prior on the regression param-
eters to 0.01. The hyperparameters for the variance
prior, that is, the prior variance 0(2), is set to the variance
of the dataset being used. As for the pseudo-data point
of variance vy, which is recommended to be <25% of the
minimum segment length (Ruggieri 2013), we vary this
parameter between 0 and 2.5 to find the value that op-
timizes the number of changepoints detected (Fig. B1).
We focus on the number of changepoints here, as these
parameters can affect the number of changepoints
detected, but not the distribution of their positions
(Ruggieri 2013). Tuning for vy is performed for the four
cases without AR(1) for which BMCpt should perform
well at identifying the true underlying model. For the
cases scenario with no changepoints (i.e., Mean and
Trend), the value of vy does not have any impact on the
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FIG. D2. Density of changepoint timings detected using EnvCpt, STARS, and BMCpt with prewhitening for the
two simulated scenarios with changepoints and AR(1) across 1000 replications for (a) a trend with a changepoint
in the regression parameters and AR(1) and (b) two changepoints in the mean with AR(1). The prewhitening is
performed using the using the MP and INV approaches with a subsample size of 20.

number of changes detected as none are detected for all
values of v, thus these results are not shown here. As
illustrated in Fig. Bla, all values of v, in the simulation
scenario of a trend with changepoints (Trend cpt) lead
to a low detection of the correct number of change-
points, but the most substantial improvement is ob-
tained with a value of 0.25. In the case scenario of mean
changepoints (Mean cpt), the correct number of change-
points is obtained at a highest frequency for any values of
vy (Fig. B1b). Setting vy to O leads to no changepoints.
Therefore, a value of 0.25 has been used subsequently in
all simulations. Finally, the maximum number of change-
points is set to 10.

APPENDIX C

Tuning of Parameters for Prewhitening

To reduce false alarms due to the presence of auto-
correlation, prewhitening of the time series was used
with STARS and BMCpt (Rodionov 2006). This consists
of removing the first-order autocorrelation in the time
series such as

(C1)

where x, and x, represent the raw and prewhitened
variable at time ¢, respectively; # is the length of the raw
time series; and p° represents the bias-corrected first-
order autocorrelation estimate. In a practical situation,
the first-order autocorrelation used in prewhitening is
unknown (and may also change over time). To obtain an
estimate, we used two approaches developed by Marriott
and Pope (1954; MP) and Orcutt and Winokur (1969;
INV). The MP estimate is given by the following:

m—1)p+1
b= ( )P ’ ()
(m—4)
where p is the median of the first-order autocorrelation
calculated in each subsample of size m. The INV esti-
mate uses four iterative corrections:

(©3)

3=

ol =pt

-k g1 1P
pok = pekt P71 53y (C4)

TABLE E1. Results ( p value) of the Lilliefors (L) and Durbin-Watson (DW) tests applied to the residuals of the best-performing models fitted to
the GMST [Trend cpt and Trend cpt + AR(1)] and PDO datasets [Mean + AR(1)]. An asterisk indicates significance at the 1% critical level.

Data
Model Test HadCRUT4 HadCRUT4krig BEST MLOST GISTEMP PDO
Trend cpt L 0.50 0.50 0.29 0.39 0.12 —
DW <0.001* <0.001* <0.001* <0.001* <0.001* —
Trend cpt + AR(1) L 0.39 0.50 0.33 0.50 0.08 —
Dw 0.53 0.25 0.19 <0.001* 0.66 —
Mean + AR(1) L — — — — — 0.50
Dw — — — — — 0.68
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FIG. E1. (left) Autocorrelation and (right) partial autocorrelation function of the residuals
from the Trend cpt + AR(1) model fitted to the global-mean surface temperature datasets for
(a) HadCRUT4, (b) HadCRUT4krig, (c) BEST, (d) MLOST, and (¢) GISTEMP. Dashed lines
represent the 95% confidence intervals on the partial autocorrelation.
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FIG. E2. (left) Autocorrelation and (right) partial autocorrelation function of the residuals
from the Trend cpt model fitted to the global-mean surface temperature datasets for (a) HadCRUT4,
(b) HadCRUT4krig, (c) BEST, (d) MLOST, and (¢) GISTEMP. Dashed lines represent the 95%
confidence intervals on the partial autocorrelation.
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TABLE E2. Comparison of the best EnvCpt models [Trend cpt and Trend cpt + AR(1)] with models including an AR(2) process on the
GMST datasets. AIC differences A between the model with the smallest AIC and the other models are presented. The model with the

smallest AIC has a A of 0 and is indicated in boldface.

Data
Model HadCRUT4 HadCRUT4krig BEST MLOST GISTEMP
Trend cpt 0.0 1.5 16.8 26.0 13.4
Trend cpt + AR(1) 7.8 0.0 0.0 0.0 0.0
Mean + AR(2) 41.6 371 375 34.4 355
Trend + AR(2) 30.5 25.0 24.8 254 252
Mean cpt + AR(2) 48.0 47.7 42.1 37.8 40.5
Trend cpt + AR(2) 42.5 37.0 36.8 374 25

To find an optimal value for the subsample size used in
prewhitening, we conduct simulations over a range of
subsample sizes using the Mean cpt + AR(1) scenario.
This is done with both MP and INV approaches for pre-
whitening using subsample sizes of 5, 10, 20, 30, 50, and 75
and illustrated in Fig. C1. With both prewhitening ap-
proaches, very large (75) and very small (5) subsample size
lead to a reduced rate of true positives and increased false
negatives toward the end of the time series. A subsample
size of approximately 20 is shown optimal here, which is
smaller than the distance between the two shifts (28 years).
When the number and location of changes is unknown, the
choice of this parameter is rather arbitrary and can have
substantial effect on the results (Fig. C1).

APPENDIX D

Results Obtained after Prewhitening the
Synthetic Data

For comparison, we apply prewhitening using both
MP and INV in all simulations with both STARS and
BMCpt and with a subsample size of 20, as chosen after

Autocorrelation

lag

optimization (Fig. C1). Figure D1 presents the number
of shifts detected for the four simulation cases with AR
(1). For the two cases with no shifts, Trend + AR(1) and
Mean + AR(1), BMCpt with prewhitening and EnvCpt
are equivalent. The number of shifts detected is reduced
for STARS, but there is still a substantial rate of false
detection. This is surprising, as STARS should be able to
return a no-change model for the Mean + AR(1) case,
but detects changes in over 34% of the series. Never-
theless, the rate of false detection is reduced with pre-
whitening but remains substantial with STARS. In presence
of changepoints [cases Trend cpt + AR(1) and Mean cpt +
AR(1)], the prewhitening deteriorates BMCpt perfor-
mance, while it significantly improves STARS ability to
detect shifts in the mean.

Figure D2 presents density estimates of the locations
of the identified changepoints for synthetic series that
were generated with changepoints and AR(1). For the
case Trend cpt + AR(1), while the peaks of the true
changes have a similar density to the EnvCpt method,
STARS and BMCpt tend to detect spurious changes
toward the end of the series. In presence of mean
changepoints, EnvCpt and both STARS and BMCpt

0.4

0.3
02f - e e e e e ==
0.1

0

-0.1

Partial autocorrelation

-0.2

lag

FI1G. E3. (left) Autocorrelation and (right) partial autocorrelation function of the residuals
from the Mean + AR(1) model fitted to the PDO. Dashed lines represent the 95% confidence

intervals on the partial autocorrelation.
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F1G. F1. Number of changepoints detected with EnvCpt with either the AIC or the BIC for each simulated scenario across 1000
replications for (a) a linear trend, (b) a linear trend with AR(1), (c) a trend with three changepoints in the regression parameters, (d) a
trend with a changepoint in the regression parameters and AR(1), (e) a constant mean, (f) a constant mean with AR(1), (g) two
changepoints in the mean, and (h) two changepoints in the mean with AR(1).

applied with prewhitening succeed at identifying the
correct timing of the changepoints. While the densities
in Fig. D2b give the impression that BMCpt is per-
forming better than STARS and EnvCpt with higher
peaks, this is due to fewer changes being detected with
this approach (see Fig. D1d).

APPENDIX E

Goodness-of-Fit of the GMST and PDO Best Models

To validate the models selected, we also verify their
underlying assumptions of normality and independence

of the residuals with additional testing (Table E1). In all
cases, the normality assumption of the residuals is re-
spected but not the independence for all Trend cpt fits
on the GMST and the MLOST Trend cpt + AR(1) fits.
To further investigate the autocorrelation structure of
the residuals for both the Trend cpt and Trend cpt +
AR(1) fits, the autocorrelation and partial autocorrelation
functions are presented in Figs. E1 and E2, respectively.
The autocorrelation and partial autocorrelation functions
are consistent with the tests of independence presented
in Table E1: The residuals of the Trend cpt + AR(1)
fits are independent overall (except for the MLOST
dataset; Fig. E1), while the residuals of the Trend cpt fit

TABLE F1. BIC differences for the eight models within EnvCpt fitted to the GMST and PDO datasets. The model with the smallest BIC
has a A of 0 and is indicated in boldface. Dashes indicate changepoint models that did not detect changepoints, as the model fit is the same

as the equivalent model without changepoints.

Data

Model HadCRUT4 HadCRUT4krig BEST MLOST GISTEMP PDO
Mean 325.8 350.9 364.7 320.2 306.3 39.1
Mean + AR(1) 19.5 22.0 213 18.3 21.0 0.0
Trend 138.6 143.6 131.6 134.6 119.4 43.9
Trend + AR(1) 7.8 10.3 7.7 8.6 10.0 33
Mean cpt 39.1 519 40.9 67.1 49.0 30.7
Mean cpt + AR(1) — — — — — —
Trend cpt 10.8 20.2 23.0 51.5 19.2 33.8
Trend cpt + AR(1) 0.0 0.0 0.0 0.0 0.0 —
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are not (Fig. E2). The autocorrelation and partial au-
tocorrelation functions for the HadCRUT4 and Had-
CRUT4krig datasets (Figs. E2a,b) reveal potential
presence of an AR(2) process in the residuals. There-
fore, our models were also fitted with an AR(2) in the
background, such as Mean + AR(2), Trend + AR(2),
Mean cpt + AR(2), and Trend cpt + AR(2). Table E2
presents the AIC differences of the models fitted with a
background AR(2) as opposed to the previously se-
lected models [Trend cpt and Trend cpt + AR(1);
Table 1]. These results show that despite a potential
AR(2) structure in the residuals, there is no benefit from
adding an extra parameter to explain the autocorrelation
structure. The AIC differences for the models including an
AR(2) are substantially larger than those of the best
models selected, that is, mostly larger than 10, indicating
essentially no evidence for choosing these models instead.
There is one exception for the GISTEMP dataset, for
which the Trend cpt + AR(2) model has a A of 2.5, which
suggests some evidence for this model being the best, but
not enough to be at play. Overall, for the five GMST da-
tasets, the Trend cpt + AR(1) fit provides the smallest
AIC and meets the underlying assumptions of the model.
As for the PDO, the model with the smallest AIC [Mean +
AR(1)] respects the underlying assumptions of normality
and independence (Fig. E3; Table E1).

APPENDIX F

Sensitivity to the Model Selection Criterion

To evaluate the sensitivity to the choice of model se-
lection criterion, we compare the results obtained on all
sets of synthetic series with EnvCpt using the Bayesian
Information Criterion (BIC; Fig. F1). In most cases, the
EnvCpt performance is slightly improved when using
the BIC, except for the Mean cpt + AR(1) case for
which the BIC detects no changepoints in strong ma-
jority, while there are two.

We also calculate the BIC for the eight models fitted
within EnvCpt to the GMST and PDO datasets (Table F1).
For all GMST datasets, the model with the smallest BIC
is Trend cpt + AR(1). This result is slightly different than
the results obtained using the AIC for the HadCRUT4
dataset for which the Trend cpt model has the smallest
AIC (Table 1). However, we discarded the Trend cpt
model for the HadCRUT4 dataset because of the
presence of autocorrelation in the residuals (Table E1;
Figs. E1, E2) and concluded that the second-best model,
Trend cpt + AR(1), was more appropriate. Thus, the best
models identified using the BIC are consistent with the
results obtained with the AIC (Fig. 3).
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