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A B S T R A C T

Airborne pollen triggers allergic reactions, which can have public health consequences. Accurate airborne pollen 
concentration modeling and prediction rely on understanding plant reproductive phenology, particularly the 
timing of flowering and pollen release. Flowering and pollen phenology data are often collected through ground 
observations and air sampling, but such in-situ data collection efforts are expensive and spatially sparse. In 
contrast to in-situ data collection, satellite-based estimates of plant phenology could potentially enable large-scale 
data collection, but it is challenging to detect the reproductive phenology of wind-pollinated flowers from space. 
Here, we infer the reproductive phenology of wind-pollinated plants on the individual tree level and city level 
using PlanetScope time series with a spatial resolution of 3 m and a daily revisit cycle. We complemented 
PlanetScope data by in-situ flower and pollen observations at the two scales, leveraging the correlation between 
vegetative and reproductive phenology. On the individual tree level, we extracted PlanetScope-derived green-up 
time and validated its correlation to flowering time using flower observations in a national-scale observatory 
network. Scaling up to the city level, we developed a novel approach to characterize pollen phenology from 
PlanetScope-derived vegetative phenology, by optimizing two tuning parameters: the threshold of green-up or 
green-down and the time lag between green-up/down and flowering. We applied this method to seven cities in 
the US and 14 key wind-pollinated tree genera, calibrated by measurements of airborne pollen concentrations. 
Our method characterized pollen phenology accurately, not only in-sample (Spearman correlation: 0.751, 
nRMSE: 13.5 % for Quercus spp.) but also out-of-sample (Spearman correlation: 0.691, nRMSE: 14.5 % for 
Quercus spp.). Using the calibrated model, we further mapped the pollen phenology landscape within cities, 
showing intra-urban heterogeneity. Using high spatiotemporal resolution remote sensing, our novel approach 
enables us to infer the flowering and pollen phenology of wind-pollinated plant taxa on a large scale and a fine 
resolution, including areas with limited prior in-situ flower and pollen observations. The use of PlanetScope time 
series therefore holds promise for developing process-based pollen models and targeted public health strategies 
to mitigate the impact of allergenic pollen exposure.

1. Introduction

Pollen is a trigger of allergic asthma and allergic rhinitis (hay fever), 
imposing significant costs on public health (Reid and Gamble, 2009; 
D’Amato et al., 2020; Idrose et al., 2022; A. B. Singh & Kumar, 2022). 
The onset, duration, and intensity of pollen seasons are highly related to 

the phenology, the timing of recurring biological events, of 
wind-pollinated plants. Health risks from pollen exposure are likely to 
exacerbate under global change, reflected in earlier starts and often 
longer durations of flowering seasons (Mo et al., 2017) and pollen sea
sons (Anderegg et al., 2021; Ziska et al., 2011, 2019), as well as higher 
pollen concentrations (Ziska and Caulfield, 2000). Currently, the 
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sparsity of pollen concentration data and the lack of operational 
process-based (‘numerical’) pollen models (D. Katz et al., 2024), espe
cially outside of Europe and Australia, hinder accurate assessments and 
timely public health responses to changing pollen seasons exacerbated 
by global changes. The elevating risks call for major improvements in 
the collection of flower and pollen phenology data on large scales and 
fine resolutions, in order to enhance mechanistic understanding and 
prediction of the reproductive phenology of wind-pollinated plants.

Previous research on plant reproductive phenology for public health 
has been limited by insufficient observational data. In the field of 
aerobiology, pollen phenology is studied with airborne pollen concen
tration data from air sampling, generally through national pollen 
monitoring networks (Scheifinger et al., 2013). These pollen concen
tration data are collected with systematic protocols, serving as a 
high-quality source for pollen modeling. However, air sampling of pol
len is expensive, and the stations are temporally and spatially sparse 
(Anderegg et al., 2021). Aggregated over a large area and identified to 
the family or genus level, pollen samples often do not allow us to study 
fine-scale spatial variations and intra-genus variations. An exception is 
pollen monitoring in Europe, where pollen concentration data are often 
processed bi-hourly in Europe (Galán et al., 2014) and soon to be 
generated by automated instruments in real time (Immler and Tziastas, 
2024). In the field of ecology, ground observations of flowering 
phenology, from observatory networks and community science, have 
been correlated with pollen phenology (Crimmins et al., 2017; Elmen
dorf et al., 2016; Templ et al., 2018). These phenological observations 
have a larger spatial coverage and a finer taxonomic resolution 
compared to air sampling data but are limited by subjectivity in the 
classification of phenophases (Donnelly et al., 2022) and spatiotemporal 
sampling bias (Pearse et al., 2017).

Although both air samples and ground observations have been used 
to advance pollen modeling, these models still need to be improved in 
accuracy and spatial robustness (Scheifinger et al., 2013; Suanno et al., 
2021; Zhu et al., 2024). On the one hand, data-driven pollen models 
using statistics (Frenguelli et al., 1989) or machine learning (Seo et al., 
2019; Zewdie et al., 2019; F. Lo et al., 2021) are usually site-specific and 
sometimes lack accuracy (Chuine and Belmonte, 2004; Maya-Manzano 
et al., 2021). It is therefore challenging to extrapolate locally-trained 
pollen models to locations without prior in-situ data collection. Inte
gration of land surface phenology as predictors has been suggested to 
improve data-driven models (Huete et al., 2019; F. Lo et al., 2021). On 
the other hand, process-based pollen models that explicitly account for 
plant reproductive phenology, pollen production, and pollen dispersion 
have been shown to be promising in predicting pollen seasons with 
robustness across Europe (Chuine and Belmonte, 2004; Sofiev et al., 
2006, 2015, 2024; Vogel et al., 2008; García-Mozo et al., 2009; Mimić 
et al., 2021; Verstraeten et al., 2022, 2024) and predicting spatial var
iations of pollen concentrations within cities in the US (D. S. W. Katz 
et al., 2023). Several gaps exist in the current process-based pollen 
models outside of Europe: they are rarely updated with near real-time 
observations; they are not available on an operational scale; they are 
usually limited in spatial resolution, missing important heterogeneity 
within cities (Katz and Batterman, 2020). To create generalizable and 
granular process-guided models of airborne pollen, we need to go 
beyond existing empirical data and obtain plant reproductive phenology 
data with a large spatial coverage and fine spatial resolution.

To overcome the data challenge, remote sensing has been explored to 
inform pollen and flower phenology, building on the correlation be
tween reproductive phenology and vegetative phenology. Leaf out and 
flowering, are tightly linked phenological events in a plant’s life cycle, 
evolved to occur in a predictable sequence with stable time intervals 
(Davies et al., 2013; Guo et al., 2023). Such flower-leaf sequences are 
crucial to plant fitness in temperate regions (Buonaiuto and Wolkovich, 
2021; Guo et al., 2023), such as through effective wind pollination in 
flowering-first species (Buonaiuto et al., 2021). Such a biophysical 
relationship motivates the inference of reproductive phenology from 

remotely-sensed vegetative phenology (Davies et al., 2013). For 
example, the onset of bud burst detected from Moderate Resolution 
Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation 
Index (NDVI) and Global Inventory Monitoring and Modeling System 
(GIMMS) NDVI were found to correlate with the onset of birch flowering 
(Karlsen et al., 2008) and birch pollen season (Høgda et al., 2002), 
respectively, on continental and decadal scales. Interannual variations 
in the flowering time of multiple plant functional types have been 
explained by remotely sensed green-up time (Delbart et al., 2015). 
Moving beyond correlation, data-driven predictive pollen models have 
also benefited from incorporating MODIS Enhanced Vegetation Index 
(EVI) as a predictor (Huete et al., 2019; F. A. Lo, 2020; Yang et al., 
2022). These studies show the feasibility of using satellite remote 
sensing to greatly expand the spatial coverage of reproductive 
phenology data and to improve pollen models.

Despite their broad spatial coverage, satellite remote sensing data 
products previously used to study flowering and pollen phenology have 
a limited spatial resolution, specifically 250 m (MODIS), 500 m 
(MODIS), or 8 km (GIMMS). Land surface phenology detected on this 
resolution suffers from the mixed pixel problem (X. Chen et al., 2018). 
This is particularly problematic for urban landscapes that are highly 
heterogeneous in land cover and plant species. Given that pollen expo
sure and plant reproductive phenology are highly spatially heteroge
neous within a city (D. S. W. Katz et al., 2019; D. S. W. Katz and Carey, 
2014), land surface phenology at a coarse spatial resolution does not 
satisfy the need for spatially-explicit pollen modeling for public health.

With a spatial resolution of 3 m and a daily revisit cycle, PlanetScope 
data provide an excellent opportunity to gather plant reproductive 
phenology data on a large scale and at an individual tree level. We 
identified the untapped potential of PlanetScope data for public health 
from two streams of research. On the one hand, PlanetScope data have 
been used to successfully detect large and brightly-colored flowers 
within a stand, with indices designed to capture spectral signatures of 
flowers, such as enhanced bloom index (EBI) (Campbell and Fearns, 
2018; B. Chen et al., 2019; Dixon et al., 2021). Although supporting the 
use of PlanetScope to detect canopy-level phenological variations, the 
PlanetScope-derived bloom index can hardly be applied to 
wind-pollinated flowers that are small and inconspicuous (Kim et al., 
2020). Reproductive phenology of wind-pollinated flowers will there
fore largely rely on the inference from vegetative phenology. On the 
other hand, PlanetScope-derived EVI has been shown to be a reliable 
data source for tree-level vegetative phenology, validated by other 
remote sensing data products (Moon et al., 2021) and ground observa
tions (Moon et al., 2022; Zhao et al., 2022; Y. Liu et al., 2024). Despite 
promising applications of PlanetScope data to detect spatial variations 
among individual tree canopies and to derive vegetative phenology, it 
has not yet been used to infer tree-level flowering phenology from 
vegetative phenology. Further, to our knowledge, there has not been 
research linking PlanetScope directly to pollen phenology, which is 
central to modeling pollen exposure.

In this study, we assessed the potential of using vegetative phenology 
data extracted from PlanetScope to infer the flowering and pollen 
phenology of wind-pollinated trees. Specifically, the study focused on 
answering the following research questions at two scales (Fig. 1, 
Fig. S1). 

Q1: On the tree level, does PlanetScope-derived vegetative 
phenology correlate with flowering phenology monitored by field 
observations?
Q2: Upscaled from the tree level to the city level, can PlanetScope- 
derived vegetative phenology be used to accurately infer pollen 
phenology characterized by airborne pollen concentrations? In 
particular, does this inference extrapolate over a large spatial scale, 
to locations where airborne pollen concentration data are 
unavailable?
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Q3: Scaling back to the tree level, can PlanetScope-derived vegeta
tive phenology be used to explore fine-scale intra-urban heteroge
neity of pollen phenology, i.e., a pollen allergy landscape?

In answering these three questions, we developed a novel workflow 
for obtaining cross-scale reproductive phenology data from PlanetScope 
time series. Our workflow has two core ideas: upscaling tree-level green- 
up/down time to the city-level green-up/down phenology, and tuning 
two parameters to calibrate city-level green-up/down phenology with 
city-level in-situ pollen phenology.

2. Materials and methods

2.1. Data description

2.1.1. Tree-level flowering observations
To test whether PlanetScope can capture tree-level variations in 

flowering phenology, we retrieved plant phenology observations from 
the National Ecological Observatory Network (NEON) (DP1.10055.001) 
that were integrated into the USA National Phenology Network (USA- 
NPN) (Elmendorf et al., 2016; Crimmins et al., 2017; National Ecological 
Observatory Network, 2020). At each site and every year, 90–100 tag
ged individual plants were observed in situ by trained technicians for 
their vegetative and reproductive phenophase status with varying 
sampling frequencies up to three times per week, following the pheno
phase definitions and protocols of NPN (Denny et al., 2014). We 
downloaded individual phenometrics from the NEON data submitted to 

NPN, which are the estimates of the dates of phenophase onsets and 
ends, measured from a series of consecutive "yes" phenophase status 
records. In this study, we used flower and leaf onset dates, which are the 
time of first “yes” observations for an individual tree in a given year. To 
complement the phenological data, we retrieved the accurate co
ordinates of tagged NEON trees using the R package geoNEON (National 
Ecological Observatory Network, 2023). We focused on primary sam
pling sites within the conterminous United States that have available 
coordinates of tagged individual plants (Fig. S2). We included data from 
2018 to 2022, as fully operational PlanetScope data collection started in 
2018 (Fig. S3).

We focused on 14 deciduous wind-pollinated tree species with 
considerable public health impacts and high abundance in the conter
minous United States (Crimmins et al., 2023; F. Lo et al., 2019): Acer 
spp. (maple), Alnus spp. (alder), Betula spp. (birch), Carya spp. (hickory), 
Celtis spp. (hackberry), Fraxinus spp. (ash), Juglans spp. (walnut), 
Liquidambar spp. (sweetgum), Morus spp. (mulberry), Platanus spp. 
(plane, sycamore), Populus spp. (poplar, aspen, cottonwood), Quercus 
spp. (oak), Salix spp. (willow), and Ulmus spp. (elm). Ulmus spp. were 
considered to have an early- and a late-flowering group, whose 
phenology was analyzed separately.

2.1.2. City-level pollen concentration from air sampling and street-tree 
inventory

To examine the potential of using PlanetScope for city-level pollen 
phenology and to inform public health, we obtained consistent and ac
curate pollen concentration data from stations associated with the 

Fig. 1. Simplified flow diagram of data and methods used in this study, and corresponding research questions. Rounded rectangles represent source datasets. 
Rectangles represent derived variables to analyze. Ellipses represent data analysis steps.
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American Academy of Allergy, Asthma & Immunology (AAAAI) Na
tional Allergy Bureau (NAB) (AAAAI, 2022) (Figs. 2 and 3). At around 80 
stations located throughout the conterminous US, airborne pollen was 
sampled daily using volumetric impactor samplers (mostly Burkard 
samplers and sometimes Rotorod samplers) (Portnoy et al., 2004; M. 
Bastl et al., 2023; Levetin et al., 2023), and then classified to the genus or 
family level and counted by NAB-certified operators. Despite possible 
differences in absolute pollen concentration estimated using Burkard 
and Rotorod samplers, these two methods are consistent in quantifying 
the seasonal trends of pollen of the same taxa (Frenz, 1999; Crisp et al., 
2013; Crimmins et al., 2023), allowing us to study taxa-specific pollen 
phenology. The NAB dataset is the most commonly used data source for 
the description and prediction of pollen phenology in public health and 
ecological research in North America. We obtained pollen concentration 
data collected from 2003 until late 2023 (Fig. 3). Data were available 
during most springs and summers after the establishment of sampling 
stations, with missing data when airborne concentrations were low 
(Fig. S4). As in the tree-level analysis, we focused on the pollen 
phenology of 14 wind-pollinated tree genera (Acer, Alnus, Betula, Carya, 
Celtis, Fraxinus, Juglans, Liquidambar, Morus, Platanus, Populus, Quercus, 
Salix, and Ulmus).

To complement the pollen concentration data, we obtained street 
tree inventories in selected cities (Figs. 2 and 4; details on sources of tree 
inventories in Table S1). Necessary reprojections were performed to 
convert all coordinates in street tree inventories to longitude and lati
tude. The taxonomy of street trees was resolved with the R package 
taxize (Chamberlain and Szöcs, 2013) for selecting trees in the genus of 
interest. When there were more than 2000 recorded trees of a genus in a 
city, we randomly selected 2000 trees (Psutka and Psutka, 2019).

We focused on seven US cities with an available street tree inventory 
and a nearby pollen monitoring station (Fig. 2): Austin (AT), Detroit 
(DT), Denver (DV), Houston (HT), New York (NY), Seattle (ST), and 
Tampa (TP). Most focal cities have a pollen monitoring station within 
the city, with a mean distance from the pollen monitoring station to the 
centroid of all censused street trees ranging from 3.7 km to 41 km. This is 
well within the footprint of a volumetric pollen monitoring station, 
which can cover a region within a radius of about 100 km (M. Bastl et al., 
2023). Two exceptions were that Denver’s pollen concentration data 

were from Colorado Springs (mean distance 97 km) and that Detroit’s 
pollen concentration data were from Sylvania (mean distance 91 km). Of 
the seven stations, most were confirmed to use Burkard samplers, except 
that Colorado Springs might have used a Rotorod sampler.

As an additional data source for validation, we retrieved flower and 
pollen cone observations from the USA National Phenology Network 
(NPN) dataset (Rosemartin et al., 2018). Data were contributed by 
volunteers through the Nature’s Notebook mobile app. We downloaded 
phenophase status observations of the 14 genera of interest from 2000 to 
2024. We focused on observations for the following phenophases rele
vant to plant reproduction: "Full pollen release (conifers)", "Pollen 
release (conifers)", "Pollen cones (conifers)", "Open pollen cones (co
nifers)", "Full flowering (50 %)", "Flowers or flower buds", and "Pollen 
release (flowers)." We kept observations within a 500 km radius of each 
of the seven NAB stations of interest in order to include sufficient data 
points that are relevant to local pollen concentration. For each taxon, 
site, and date, we calculated the percentage of “Yes” observations for the 
above phenophases out of all “Yes” and “No” observations (Crimmins 
et al., 2023). This percentage between 0 % and 100 % is a proxy for the 
reproductive status of plants in an area (Fig. S5) that could later be used 
to compare with inferred pollen phenology.

2.1.3. PlanetScope reflectances for vegetative phenology
We retrieved PlanetScope images from 2017 to 2023 for all trees 

involved in the analyses, including sampled trees at NEON sites and 
street trees from 14 wind-pollinated tree genera in seven selected US 
cities (Fig. 4). We downloaded the PlanetScope atmospherically cor
rected surface reflectance product (ortho_analytic_4b_sr) (Planet Team, 
2017) through the Planet API, using a custom package based on the R 
package planetR (Bevington et al., 2024). We applied the “harmonize” 
tool in the Planet API with “Sentinel-2” as the target sensor, in order to 
make all PlanetScope data consistent and approximately comparable to 
Sentinel-2 data (Kington and Collison, 2022). All images obtained were 
acquired during the day (sun elevation >0 m). At the coordinates of the 
trees of interest, we obtained the reflectances in the red, green, blue, and 
near-infrared bands. For quality control, we applied Useable Data Masks 
(UDM2) (Planet Team, 2023) to include only pixels that were clear, had 
no snow, ice, shadow, haze, or cloud, and had algorithmic confidence in 

Fig. 2. Map of seven studied cities with street tree inventory (blue squares) and pollen monitoring stations associated with the National Allergy Bureau (NAB) (red 
crossed circles). Street tree inventory was used to locate known wind-pollinated trees and to extract their phenological signals from remote sensing. Pollen moni
toring stations provide pollen concentration data for calibration and validation of the model that predicts pollen phenology with remote sensing data. Pollen 
monitoring stations were located within 100 km of the centroid of the city’s street trees. Other NAB pollen monitoring stations not used in this analysis are marked in 
gray crossed circles.
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classification ≥80 %. Given little information on the size and shape of 
trees, we obtained reflectances at the focal coordinates, instead of within 
polygons that cover tree canopies (Dixon et al., 2023). For each date, 
pixel, and band, we computed mean reflectances if there were multiple 
visits in a day.

2.2. Data processing

2.2.1. Curating ground-observed flowering phenology data
In processing the NEON flowering phenology data, we exclude NEON 

sites located outside the conterminous United States. We also excluded 
sites situated in the Mediterranean climatic zone (all sites in California), 
where plant phenology is primarily driven by precipitation instead of 
temperature, distinct from other parts of the conterminous US. We 
focused on wind-pollinated tree species that were widely represented in 
the NEON data (≥50 records). We removed outliers of spring flower 
onset dates that were biologically implausible for the species present in 
the dataset (later than day 150).

2.2.2. Curating air-sampled pollen concentration data
We processed NAB pollen concentration data to characterize pollen 

phenology in several steps. 

1) In order to include at least one full pollen peak, we extended data in 
each year in both directions, into day-of-year (DOY) 275 (Oct 2) in 
the previous calendar year and into day 90 (Mar 30) in the following 
calendar year. Data on day 366 in leap years were ignored. This 
extended duration covers a total of 546 days.

2) We removed combinations of genus and city when there were no 
trees of interest in the street tree inventory, or there were no more 
than 30 pollen concentration records greater than or equal to 
0 grains m− 3. We removed Fraxinus spp. from New York and Detroit 

from our dataset due to the mass die-off of these trees in these two 
cities during our study period.

3) To compress extreme values and stabilize the variance, we trans
formed all pollen concentration values [pollen]gcT(t) to their square 

root 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[pollen]gcT(t)

√
(K. Bastl et al., 2018; Bonini et al., 2022). Here, t 

represents the day of year. Indices g, c, T represent genus, city, and 
year, respectively.

4) In order to focus on single pollen peaks for plant genera that have 
both early- and late-flowering variations (e.g., Ulmus spp.), as well as 
to reduce the confounding effect of outliers outside the reproductive 
season, we constrained the pollen seasons for each taxon, setting the 
pollen concentration outside the season to zero. Genus-specific pol
len seasons were determined by summing the total pollen concen
tration over all cities and years, fitting a Gaussian kernel, calculating 
a window of mean ± 1.96 × standard deviation (Zhang and Steiner, 
2022), and extending the window by 50 days on both ends (Fig. S6). 
An exception was that the early and late pollen windows of Ulmus 
spp. were detected by fitting a Gaussian mixture model with two 
peaks.

To handle short gaps of missing data within the pollen peaks and 
reduce the impacts of outliers, we gap-filled and smoothed the time 

series with weighted Whittaker smoothing S
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

[pollen]gcT(t)
√ )

(Eilers, 

2003, 2004). Here S refers to a weighted Whittaker smoothing 
operation.

2.2.3. Calculating enhanced vegetative index from PlanetScope reflectances
In order to characterize tree-level vegetative phenology, we used 

reflectances from PlanetScope images to extract phenological metrics, 
specifically green-up or green-down time, for each individual tree of 
interest. We performed the following steps. 

Fig. 3. Climatologies of daily pollen concentration (grains m− 3) of 14 key pollen-producing genera in studied cities. Climatologies were calculated by averaging the 
data for the same day of the year across all years over the period 2003–2023. Most genera have pollen peaks in the spring, except for Ulmus which have pollen peaks 
in both the spring and fall. Cities are ordered according to their latitude, showing latitudinal trends in the time of pollen peak. Data are from the National Allergy 
Bureau (NAB) pollen monitoring stations.
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1) We calculated the enhanced vegetation index (EVI) (H. Q. Liu and 
Huete, 1995) (Eqn. (1)). PlanetScope EVI has been shown to accu
rately extract leaf phenology metrics validated by local digital 
camera imagery (PhenoCams), robust to different atmospheric con
ditions and less likely to saturate in densely vegetated areas 
compared to PlanetScope normalized difference vegetation index 
(NDVI) (Wu et al., 2021). 

EVI=
2.5 (NIR − Red)

NIR + 6 × Red − 7.5 × Blue + 1
(Equation 1) 

We used the following criteria to filter out possibly erroneous EVI 
values: reflectances in all visible bands were positive values, and EVI 
was between zero and one.

2) We extended the time series in each year from day 275 (Oct 2) in the 
previous calendar year to day 90 (Mar 30) in the following year 
(spanning 546 days) in order to include at least one full growing 
season with green-up and green-down. This step was necessary for 
the detection of green-up day when EVI increases from the minimum 
before the New Year, and the detection of green-down day when EVI 
decreases to the minimum after the New Year. We gap-filled and 
smoothed all extended time series EVI(t) with weighted Whittaker 
smoothing S(EVI(t)) (Kong et al., 2019).

3) We selected a time series of EVI with significant seasonality. In 
particular, we fitted a simple linear regression model and then three 
piecewise regression models with one, two, and three change points, 
respectively (Eqn. (2)) (Beaulieu and Killick, 2018).  

Model 1 : S(EVI(t))= λ + βt + εt 

Model 2,3,4 take the following form with m = 1,2,3 respectively: 

(Equation 2) 

EVI time series from each genus, city, year, and tree were analyzed 
separately, but we omit the indices here for simplicity. In Model 1, t 
represents the time in days, λ and β represent the intercept and trend 
and εt is white noise. In Models 2–4, m represents the number of 
changepoints, cm (m = 1,…,3) represent the timing of change points, 
and λ1, …,λm and β1, …,βm represent the intercept and trend in each 
segment. Piecewise regression models were fitted with R package 
segmented (Muggeo, 2008). We ranked the four models according to 
the Akaike information criterion (AIC). If a simple linear regression 
was the best model, we discarded the time series as it may lack 
seasonal changes in greenness.

2.3. Inferring reproductive phenology with PlanetScope

2.3.1. Inferring flowering phenology on the tree level
For individual trees at NEON sites (Fig. S1) monitored for phenology, 

we used the EVI time series to identify the green-up phases empirically 
(Fig. 5). The end of a green-up phase (usually in the summer) was 
determined as the day of year when EVI reaches the maximum in the 
growing season. The start of a green-up phase (usually in the winter) was 
then determined as the day of year when EVI is at the minimum, prior to 
the end of the green-up phase. We then determined the timing of green- 
up at the 50 % threshold (usually in the spring). This empirical method 
of defining green-up/down time has been widely applied to remote- 
sensing data in order to be compatible with different plant functional 
types with various seasonality that exhibit intra-annual changes in 
greenness (Moon et al., 2021). We tested the correlation between the 50 
% green-up time and the flowering time measured by the day of flower 
onset in the corresponding year from 2018 to 2022. We assessed the 

Fig. 4. A subset of street trees in Detroit overlayed on a true-color PlanetScope image on May 8, 2017. The extent of the area is 83.1630◦W to 83.1381◦W longitude and 
42.3869◦N to 42.4054◦N latitude. The true-color image was constructed with the reflectances in the red, green, and blue bands, with brightness adjusted. The colors of 
points indicate street trees of different genera. Note that as we show only a small part of Detroit, the genera here do not represent all allergenic genera present in Detroit.
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Pearson correlation coefficients and the significance of the correlations 
across all sites.

2.3.2. Inferring pollen phenology on the city level
To infer city-level pollen phenology from tree-level vegetative 

phenology monitored by PlanetScope, we developed the following 
nonparametric algorithm with two tuning parameters (Fig. 6, Algorithm 

1, Eqns. (3)–(7)). We first extracted the timing of green-up/down events 
for individual trees at various thresholds based on their EVI curves. 
These individual events were then upscaled to city-level vegetative 
phenology. Next, we applied various time lags to vegetative phenology 
to derive city-level pollen phenology. Finally, we optimized thresholds 
and lags with air-sampled city-level pollen phenology. We describe the 
details of the algorithm below. 

Fig. 5. Extraction of tree-level phenological metric from PlanetScope data for wind-pollinated trees sampled at the National Ecological Observatory Network 
(NEON). We show two trees at Harvard Forest & Quabbin Watershed (HARV, 42.53691◦ N, 72.17265◦ W) and Oak Ridge (ORNL, 35.96413◦ N 84.28259◦ W) sites as 
examples. Black points are Enhanced Vegetation Index (EVI) calculated from PlanetScope reflectances at the coordinates of the trees of interest. Green lines are 
smoothed EVI. Green shades indicate the period of green-up extracted from smoothed EVI curves, spanning the time with minimum EVI in the winter and the time 
with maximum EVI in the summer in each growing season. Vertical green lines are 50 % green-up time in each growing season, which is the time when EVI crosses 50 
% of the range between minimum EVI and maximum EVI.

Fig. 6. Nonparametric algorithm for inferring pollen phenology from vegetative phenology derived from PlanetScope. The model has four main steps: (A) Extract 
tree-level green-up/down date at threshold θg (e.g., θg = 50 %). (B) Upscale to city-level leaf phenology. (C) Shift to city-level pollen phenology with leaf-pollen lag 
δgc (e.g., δgc = − 3 days). (D) Compare with city-level pollen concentration.
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1) We first extracted the timing of green-up/down for all trees of in
terest as the day of year when their growing season EVI curves first 
cross the green-up/down threshold θg (Eqn. (3)). We used a similar 
algorithm to that described in section 2.3.1 (Fig. 5). The end of a 
green-up phase (usually in the summer) was determined as the day of 
year when EVI reaches the maximum in the growing season. The 
start of a green-up phase was then determined as the day of year 
when EVI is at the minimum (usually in the previous winter), prior to 
the end of the green-up phase. Similarly, the start of a green-down 
phase (usually in the summer) was determined as the day of year 
when EVI reaches the maximum in the growing season; the end of a 
green-down phase (usually in the following winter) was then deter
mined as the day of year when EVI is at the minimum, after the start 
of the green-down phase. We then determined the timing of green- 
up/down at multiple thresholds, including 30 %, 40 %, 50 %, 60 %, 
and 70 % green-up for genera that flower in the spring (all except 
late-flowering Ulmus spp.), and 70 %, …, 30 % green-down for late- 
flowering Ulmus spp. 

tgreen− up
(
θg
)
= min

{
t
⃒
⃒ EVI(t) ≥ θg(maxt(EVI(t)) − mint(EVI(t)))

}

tpeak = min{t | EVI(t) ≥ maxt(EVI(t))}

tgreen− down
(
θg
)
= min

{
t
⃒
⃒ t ≥ tpeak and

EVI(t) ≤ θg(maxt(EVI(t)) − mint(EVI(t)))

}

θg ∈ {30%,40%,50%, 60%,70%}

(Equation 3) 

Algorithm 1. Algorithm for inferring city-level pollen phenology from 
tree-level vegetative phenology.

1: Input: tree-level EVI curves, city-level pollen phenology
2: Parameters: θg (green-up/down threshold), δgc (leaf-pollen lag)
3: Step 1: Extract timing of green-up/down
4: for each tree i in genus g, city c, and year T do
5: Determine green-up/down timing tgreen-up∕down (θg) based on EVI curves and 

green-up/down thresholds θg.
6: end for
7: Step 2: Upscale to city-level vegetative phenology
8: for each day t in genus g, city c, and year T do
9: Calculate frequency of green-up/down events ρgcT(t; θg).
10: end for
11: for each genus g, city c, and year T do
12: Apply Whittaker smoothing and normalization to ρgcT(t; θg) to obtain city-level 

vegetative phenology ψgcT(t; θg).
13: end for
14: Step 3: Shift to city-level pollen phenology
15: for each genus g, city c, and year T do
16: Shift city-level vegetative phenology ψgcT(t; θg) by δgc to obtain city-level 

pollen phenology ϕgcT(t; θg, δgc).
17: end for
18: Step 4: Normalize NAB-derived city-level pollen concentration
19: for each genus g, city c, and year T do

20: Normalize transformed pollen concentration time series 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[pollen]gcT(t)

√
before 

and after Whittaker smoothing to obtain NAB-derived city-level pollen phenology 
ΠgcT(t) and πgcT(t).

21: end for
22: Step 5: Calibrate tuning parameters
23: for each threshold θg, genus g, and city c do
24: Perform a grid search to find optimal δ̂gc(θg) that minimize total nRMSE 

between ϕgcT(t; θg, δgc) and πgcT(t).
25: end for
26: for each genus g do
27: Using δ̂gc(θg), perform a grid search to find optimal θ̂g that minimize total 

nRMSE between ϕgcT(t; θg, δ̂gc(θg)) and πgcT(t).

28: Using θ̂g, find optimal δ̂gc.
29: end for
30: Output: Optimized PlanetScope-derived city-level pollen phenology ϕgcT(t; θ̂g,

δ̂gc) with best-fit parameters θ̂g and δ̂gc.

Note that the first tuning parameter in our model is θg, the green-up 
or green-down threshold in the growing season EVI time series that is 
used to obtain green-up/down time. We allowed the threshold to 
vary by genus g.

2) Given that our pollen concentration data for validation are on the 
city level rather than tree level, we upscaled the tree-level green-up/ 
down time to the city-level green-up/down frequency ρgcT

(
t; θg

)
by 

summarizing the frequency of inferred green-up/down events at 
green-up/down threshold θg on day t in a given genus, city, and year. 
We then applied a weighted Whittaker smoothing and a normaliza
tion such that it sums up to one over all days in a year (Eqn. (4)). 

ψgcT
(
t; θg

)
=

S
(
ρgcT

(
t; θg

))

∑

t
S
(
ρgcT

(
t; θg

)) (Equation 4) 

The resulting city-level vegetative phenology ψgcT
(
t; θg

)
is concep

tually similar to a probability density function of observing green- 
up/down events.

3) Building on the biophysical and empirical relationships between 
vegetative and reproductive phenology, we assumed that the time of 
spring pollen emission and the time of leaf-out of a tree has a rela
tively stable time lag given a specific climate (Buonaiuto and Wol
kovich, 2021; Ma et al., 2021; Guo et al., 2023). Late-flowering 
Ulmus spp. is an exception (Wozniak and Steiner, 2017), with little 
knowledge of the mechanisms of their flowering phenology. We 
assumed that their flowering time is associated with the senescence 
phases of vegetative development, similar to other late-flowering 
species (Rojo et al., 2022).We shifted the city-level vegetative 
phenology ψgcT

(
t; θg

)
to the city-level pollen phenology φgcT

(
t; θg, δgc

)

by applying leaf-pollen lags δgc (Eqn. (5)). We allowed leaf-pollen 
lags to range from − 90 days to 90 days (±3 months), at the inter
val of 1 day. We allowed the lag to vary by both genus and city. We 
acknowledge that this method simplifies the duration of pollen 
emission to a single pollen emission date (Dahl et al., 2013), hence 
only capturing the variations in city-level pollen concentration 
caused by the variations in pollen emission among trees but not 
within individual trees. 

φgcT
(
t; θg, δgc

)
= ψgcT

(
t − δgc; θg

)

δgc ∈ [− 90, 90] ∩ Z
(Equation 5) 

Note that the second tuning parameter in our model is δgc, which is 
the time lag between the timing of leaf phenology and pollen 
phenology.

4) We scaled the air-sampled city-level pollen concentration to one 
comparable to PlanetScope-derived city-level pollen phenology, 
providing city-level pollen phenology for calibration and assessment. 
We performed normalization to transformed pollen concentration 

time series 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[pollen]gcT(t)

√
to remove the spatiotemporal differences 

from local vegetation cover, pollen productivity, and pollen sam
pling methods. We normalized pollen concentration before and after 
Whittaker smoothing to obtain NAB-derived city-level pollen 
phenology ΠgcT(t) and πgcT(t) for model assessment and calibration, 
respectively (Eqn. (6)). 

ΠgcT(t) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[pollen]gcT(t)

√

∑

t
S
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

[pollen]gcT(t)
√ )

πgcT(t) =
S
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

[pollen]gcT(t)
√ )

∑

t
S
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

[pollen]gcT(t)
√ )

(Equation 6) 
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5) We assume that NAB-derived city-level pollen phenology πgcT(t)
matches PlanetScope-derived city-level pollen phenology φgcT

(
t; θ̂g,

δ̂gc
)

with optimized green-up/down threshold θ̂g and optimized leaf- 
pollen lag δ̂gc. Therefore, we performed a two-step grid search to 
optimize θg and δgc based on the normalized root mean square error 
(nRMSE) between PlanetScope and NAB-derived pollen phenology 
(Eqn. (7)). Here, we normalized RMSE by the range of NAB-derived 
city-level pollen phenology πgcT(t) (Jeon et al., 2018; D. Singh and 
Singh, 2020). We first selected the leaf-pollen lag δ̂gc

(
θg
)

for each 
green-up/down threshold θg that minimized total nRMSE for each 
genus and city. We then selected the green-up/down threshold θ̂g 

that minimized total nRMSE for each genus. We used θ̂g to find δ̂gc.
define 

nRMSE(x, x̃)=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

k=1
(xk − x̃k)

2

√ /

(max(xk) − min (xk))

Step 1: 

δ̂gc
(
θg
)
= arg min

gc

{
∑

T
nRMSE

(
πgcT(t),φgcT

(
t; θg, δgc

))
}

Step 2: 

θ̂g = arg min
g

{
∑

c

∑

T
nRMSE

(
πgcT(t),φgcT

(
t; θg, δ̂gc

(
θg
) ) )

}

δ̂gc = δ̂gc
(

θ̂g
)

(Equation 7) 

Please see Supplementary Note for details on the number of pa
rameters. The PlanetScope-derived vegetative phenology modified by 
the optimized threshold and lags φgcT

(
t; θ̂g, δ̂gc

)
was considered the 

optimized PlanetScope-derived city-level pollen phenology.
We assessed the accuracy of PlanetScope-derived city-level pollen 

phenology φgcT
(
t; θ̂g, δ̂gc

)
using its Spearman correlation coefficients and 

nRMSE with NAB-derived city-level pollen phenology ΠgcT(t). Notably, 
we compared the Spearman correlation coefficients and RMSE for 
inferring pollen phenology both in-sample and out-of-sample. In-sample 
tests assessed the ability of the PlanetScope method to characterize 
variations in pollen phenology, whereas out-of-sample tests assessed the 
effectiveness of the PlanetScope method to infer pollen phenology for 
cities with no prior pollen concentration observations. For in-sample 
tests, all cities were used in the optimization of parameters. For out- 
of-sample tests, we conducted leave-one-out cross-validation. Specif
ically, we removed a random city from the training dataset at a time and 
optimized threshold and lags in the remaining cities. To predict the lag 
for the city held for validation, we assumed a linear relationship be
tween the lag and the climate of the city (Fig. S7). To avoid overfitting, 
we used a simple linear relationship with one predictor representing the 
long-term temperature of each city. Specifically, we used the mean 
annual temperature in the TerraClimate Climatologies (1981–2010) 
dataset (Abatzoglou et al., 2018). We used long-term average temper
atures from a past period as the method is based on the mechanistic 
assumption that the leaf-flower relationship is shaped by the long-term 
climate of the area and remains relatively stable over time (Davies et al., 
2013; Guo et al., 2023). With an optimized threshold and a predicted 
lag, we subsequently inferred pollen phenology from vegetative 
phenology at the city held for validation. As the out-of-sample tests rely 
on extrapolation over a climatic gradient, we could only implement 
them for Quercus spp. that were present in all seven cities studied.

In addition to validation with NAB data, we compared the inferred 
pollen phenology with the percentage of local “Yes” observations of 
flower and pollen cones from NPN data. As these two variables are on 

Fig. 7. Correlation between 50 % green-up time from PlanetScope and flower onset time from the National Ecological Observatory Network (NEON). 50 % green-up 
time was calculated as the time when PlanetScope-derived Enhanced Vegetation Index crosses 50 % of the range between its minimum and maximum for an in
dividual tree in a growing season. Flower onset time was calculated as the time when flowers were first observed for an individual tree in a year. Different colors 
indicate NEON sites.
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different scales, we calculated the Spearman correlation coefficients.

2.3.3. Inferring pollen phenology on the tree level
Following the calibration of green-up/down threshold and leaf- 

pollen lag using NAB-derived city-level pollen phenology, we then 
scaled back down to infer tree-level pollen phenology using 
PlanetScope-derived green-up/down time tgreen− up/down

(
θg
)

(Eqn. (3)). 
We followed the same assumption used in the previous analysis that the 
time of peak pollen emission and the time of green-up/down of a tree has 
a time lag, optimized for each genus and city (Eqn. (8)). 

tpollen = tgreen− up
(

θ̂g
)
+ δ̂gc (Equation 8) 

We were able to map the inferred peak pollen emission time of trees 
in a specific genus, city, and year tpollen. This allowed us to summarize 
and visualize intra-urban variations in pollen phenology. Given that 

NAB airborne concentration data used were collected at one station per 
city, future validation of PlanetScope-derived pollen allergy landscape 
with in-situ pollen phenology data at finer resolution is warranted.

All data analyses were performed in R v. 4.2.0 (R Core Team, 2024).

3. Results

3.1. PlanetScope-derived vegetative phenology correlates with flowering 
phenology

We found significant correlations between PlanetScope-derived 50 % 
green-up time and ground-observed flower onset time in wind- 
pollinated species that were well-sampled (≥50 records) across NEON 
sites in conterminous United States (Fig. 7). There were significant 
positive correlations in six out of eight species studied, including Acer 

Fig. 8. Comparing city-level pollen phenology derived from PlanetScope and from airborne pollen concentration monitored at the National Allergy Bureau pollen 
monitoring stations. City-level pollen phenology is standardized pollen concentration that sum up to one for each station, year, and genus. (A) Pollen phenology 
inferred from PlanetScope-derived vegetative phenology tuned to the optimal green-up/down thresholds and leaf-flower lags (lines) compared to pollen phenology 
inferred from airborne pollen concentration (points). Pollen phenology from both data sources was standardized to probability density distribution within each city 
and year to allow comparison. Here we show examples of Quercus spp. (oak) pollen phenology in two cities in the south (Houston) and north (Detroit) of conter
minous United States. (B) Accuracy of inferring pollen phenology with the PlanetScope method, both in-sample (fitting model with data from all cities) and out-of- 
sample (leave-one-out cross-validation), measured by Spearman correlation, indicating the level of significance (p ≤ 0.05).
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pensylvanicum (striped maple), Acer rubrum (red maple), Carya ovata 
(shagbark hickory), Liquidambar styraciflua (sweetgum), Quercus mon
tana (chestnut oak), and Quercus rubra (red oak). For the other two 
species, Juglans nigra (eastern American black walnut) and Quercus 
stellata (post oak), we observed no significant correlation and a signifi
cant negative correlation, respectively. Compared to strong correlation 
across sites, the correlation was limited within sites, where phenological 
variations are small. These correlations between Planet-derived green- 
up and ground-observed flower onset were consistent with ground- 
observed leaf onset and ground-observed flower onset (Fig. S8).

3.2. PlanetScope-derived vegetative phenology predicts city-level pollen 
phenology in-sample and out-of-sample

We were able to infer city-level pollen phenology from PlanetScope- 
derived tree-level vegetative phenology at a reasonable accuracy with 
optimized green-up/down thresholds for each genus and further the 
leaf-pollen lag for each city (Fig. 8, Figs. S9, S10, S11, S12). Among all 
282 combinations of genus, city, and year, the in-sample accuracy of our 
PlanetScope method achieved a Spearman correlation of 0.567 (median, 
95 % interval: 0.125–0.845) and a nRMSE of 14.2 % (8.81 %–33.6 %). In 
in-sample tests, 266 out of 282 (94.3 %) Spearman correlations were 
statistically significant (p ≤ 0.05). Across genera, the highest and lowest 
Spearman correlations were seen in Quercus spp. (correlation: 0.751, 
0.491–0.918) and in Juglans spp. (correlation: 0.454, 0.260–0.531); the 
lowest and highest rRMSE were seen in Liquidambar spp. (nRMSE: 11.0 
%, 8.68 %− 12.7 %) and in Alnus spp. (nRMSE: 19.0 %, 10.7 %− 23.9 %).

To test if our method can be generalized to locations without prior 
pollen concentration data, we performed an out-of-sample test for 
Quercus spp. that was present at seven cities, assuming a linear rela
tionship between leaf-pollen lag and long-term climate of the city 
(Fig. S7). Our PlanetScope method achieved an out-of-sample Spearman 
correlation of 0.691 (0.337–0.910), with all 33 correlations being sta
tistically significant, and an out-of-sample nRMSE of 14.5 % (9.82 %– 
36.0 %). Out-of-sample performances were comparable to in-sample 
performances.

We also validated in-sample PlanetScope-inferred pollen phenology 
with NPN-derived pollen phenology (Fig. S13). 95 out of 130 (73.1 %) 
Spearman correlations were statistically significant (p ≤ 0.05). The 
median Spearman correlation was 0.479 (− 0.297–0.795), lower than 
the correlation with NAB-derived pollen phenology. Across genera, the 
highest and lowest Spearman correlations with NPN data were seen in 
Acer spp. (0.583, − 0.0364–0.809) and in Salix spp. (0.242, 
0.0371–0.664).

3.3. PlanetScope-derived vegetative phenology informs within-city 
variations in pollen phenology

Beyond the promise of extrapolating over a large spatial scale, we 
also explored the potential of leveraging the fine spatial resolution of 
PlanetScope time series to map the taxonomic and spatial details of 
pollen concentration within cities. Although the studied genera are 
similar in their time of leaf green-up, there was more heterogeneity in 
their time of pollen emission (Fig. 9). In addition, both the distributions 
of spring leaf green-up time and pollen emission time among trees of 
interest in a city differ from often-assumed Gaussian kernels, charac
terized by asymmetric peaks (Fig. 9).We mapped the inferred pollen 
emission among trees, showing the pollen allergy landscape with spatial 
variations within cities (Fig. 10).

4. Discussion

In this study, we developed a workflow to infer flowering and pollen 
phenology from PlanetScope-derived vegetative phenology, validated 
by in-situ phenological observations and measurements of airborne 
pollen concentrations. On the tree level, PlanetScope-derived green-up 
time was correlated with flower onset time. On the city level, 
PlanetScope-derived green-up/down time at an optimized threshold and 
shifted by a time lag can be used to characterize pollen phenology, with 
the possibility to predict out-of-sample pollen phenology in cities 
without pollen concentration observations. Further, we demonstrated 
the power of PlanetScope time series in mapping the pollen allergy 
landscape within cities. This study reveals the potential of high spatio
temporal resolution remote sensing data for modeling the reproductive 
phenology of wind-pollinated plants and mapping allergenic pollen ex
posures on large scales and in great spatial details.

4.1. Relationship between vegetative and reproductive phenology

In both tree- and city-level analyses, we showed the link between 
vegetative and reproductive phenology, either flower onset or pollen 
emission. Similar relationships have been widely supported in previous 
studies but on large spatial and taxonomic scales (Davies et al., 2013; Du 
et al., 2017; Høgda et al., 2002; Karlsen et al., 2009). However, this 
relationship has rarely been examined on the individual tree level (but 
see Primack, 1985). By comparing 50 % green-up time and flower onset 
time, we showed that individual trees that green up earlier also tend to 
flower early (Fig. 7), which may be attributed to extrinsic or intrinsic 
factors.

The leaf-flower correlation can be explained by shared extrinsic 

Fig. 9. Distributions of PlanetScope-derived tree-level spring 50 % green-up time (representing leaf phenology) and peak pollen emission time (representing pollen 
phenology) in Detroit in the spring of 2018. Colors indicate different genera.
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environmental conditions, as spring leaf and flower phenology respond 
to a common set of environmental cues (Cook et al., 2012). The optimal 
timing of plant life-history events in temperate ecosystems has been 
predicted to be constrained by the trade-off between harsh abiotic 
conditions and high biotic competition (CaraDonna and Bain, 2016; 
Iwasa and Levin, 1995; Post, 2013). This theory applies to both vege
tative and reproductive phenology. The spring leaf-out of most 
temperate woody plant species is a result of balancing the advantages of 
a longer growing season with the risks from frost damage, mechanisti
cally controlled by a suite of winter temperature, spring temperature, 
and photoperiod cues (Polgar and Primack, 2011). Flowers, being more 
sensitive than leaves to frost damage (CaraDonna and Bain, 2016), are 
also highly controlled by similar environmental cues (Wang et al., 
2020). Shared climatic gradients can explain why remotely sensed land 
surface phenology was correlated with flowering and pollen season 
onset on a regional scale (Høgda et al., 2002; Karlsen et al., 2009). On 
the scale of individual trees, flowering and pollen phenology are likely 
to both respond to shared microclimatic conditions, such as intra-urban 

temperature variation (D. S. W. Katz et al., 2019).
In addition to extrinsic factors, the leaf-flower correlation can be 

further explained by plants’ distinct intrinsic attributes that determine 
their phenology (Davies et al., 2013). On a species level, these could be 
intrinsic species attributes such as life form, habit, dispersal mode and 
pollination that determine species’ phenological responses to environ
mental cues (Davies et al., 2013), which could explain why closely 
related species tend to flower and leaf at similar times (i.e., phylogenetic 
conservatism) (Davies et al., 2013; Du et al., 2017). On an individual 
level, genetic differences among individuals might contribute to the 
leaf-flower correlation.

By revealing a leaf-flower correlation that holds on a scale smaller 
than previously known, we suggest the presence of fine-scale mecha
nisms for this correlation, either microclimatic or genetic. Such insight 
into the relationship between phenological events might inform the 
integration of leaf phenology in the mechanistic model for flower and 
pollen phenology.

Fig. 10. Maps of PlanetScope-derived pollen emission time in Detroit street trees in the spring of 2018, one for each genera. A brighter color indicates an earlier 
estimated pollen emission time from an individual tree, showing spatial heterogeneity in pollen phenology within each city and genus.
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4.2. Detecting tree-level phenology with PlanetScope

Validated by in-situ phenological observations, we closely examined 
the often-assumed potential of PlanetScope to detect tree-level 
phenology (Cheng et al., 2020; Wu et al., 2021; Zhao et al., 2022). 
Across NEON sites, PlanetScope-derived phenometrics captured 
tree-level variations in the onset of maple and oak flowers. This result is 
consistent with the finding that PlanetScope-derived phenometrics 
explained tree-level variations in the leaf onset time of deciduous trees 
across NEON sites (Zhao et al., 2022) and in leaf senescence time at a 
PhenoCam site in a temperate forest (Wu et al., 2021).

Nevertheless, we noted that tree-level correlations were contributed 
mainly by cross-site rather than within-site correlations (Fig. 7). The 
weak within-site correlations were also observed in Zhao et al. (2022)
and were explained with both the uncertainty of extracting pheno
metrics from PlanetScope time series and inconsistencies in field 
phenological observations. An additional reason is that the correlations 
between leaf onset time and flower onset time, a premise of our method, 
might be weaker within the site compared to across sites (Fig. S7).

The ability to detect tree-level phenology using PlanetScope time 
series is highly relevant from both a scientific and a practical standpoint. 
On one hand, there are large variations between the phenology of trees 
within a population, often with a conserved order of phenological events 
among trees repeating from year to year, referred to as “phenological 
rank” (Delpierre et al., 2017). Such tree-level phenological variations 
could arise from multiple factors, including phenological variations in 
phenotype, microclimate, and local resource availability (Vitasse et al., 
2021). PlanetScope-derived phenology will allow a better understand
ing of ecological factors that underlie phenology. In practice, tree-level 
variations in pollen phenology contribute to spatial heterogeneity of 
pollen concentration within a city (D. S. W. Katz et al., 2019).

While current pollen concentration data and pollen models are largely 
confined to regional or city scales, PlanetScope-derived pollen phenology 
has the potential to empower process-guided pollen models with a higher 
spatial resolution. Here, we demonstrate how our PlanetScope-derived 
green-up time tuned to the optimal thresholds and lags, integrated with 
street-tree inventory, allowed us to map the spatial heterogeneity of 
PlanetScope-derived pollen emission time in a given city and time 
(Fig. 10). Such maps showing intra-urban phenological variations can 
inform decision-making such as time and location of outdoor activities. 
Future validation with spatiotemporal pollen phenology data on sub-city 
scales is warranted (Zapata-Marin et al., 2022).

The method we employed to extract tree-level phenology here using 
coordinates of censused trees combined with PlanetScope is highly 
scalable, but limitations remain given uncertainties in effective footprint 
size and geolocation accuracy of PlanetScope pixels. Small trees (e.g., 
with a canopy diameter <3 m) might not be suitable to be extracted for 
the phenological signal from PlanetScope. The size of trees could be 
controlled if there exists information on tree diameter, height, or age in 
tree inventories; alternatively, this could be achieved by segmentation of 
tree canopy. Manual segmentation of tree crowns from drone imagery 
has been used to delineate polygons to extract phenological signals from 
PlanetScope (Wu et al., 2021; Zhao et al., 2022). Such tree crown seg
mentation could be automated in the presence of co-registered airborne 
RGB, LiDAR hyperspectral imagery, and high-quality training data 
(Weinstein et al., 2021).

4.3. Using PlanetScope time series to inform pollen phenology

In the city-level analysis using pollen concentration data, we pro
posed a novel workflow to predict pollen phenology from PlanetScope 
time series. We compared the performance of our method to previous 
machine learning models that do not explicitly account for phenology 
and a study that directly accounts for flowering phenology. On the one 
hand, our in-sample nRMSE of 14.2 % and out-of-sample nRMSE of 14.5 
% (for Quercus spp. only) were highly competitive with machine 

learning models with nRMSE generally above 20 % (Seo et al., 2019; 
Makra et al., 2023), even though our model had very few parameters 
(Supplementary Note) and we did not include any environmental pre
dictors to account for climate or weather changes. On the other hand, 
our performance was comparable to or better than that of process-based 
models. For example, the System for Integrated modeLling of Atmo
spheric coMposition (SILAM), a widely-used process-based modeling 
system in Europe (Sofiev et al., 2024), gave an nRMSE of approximately 
20 % in pollen prediction (Sofiev et al., 2015). The Environment – High 
Resolution Limited Area Model (Enviro-HIRLAM) predicted birch pollen 
over Europe with RMSE of 1223.95–1639.47 pollen m− 3, translating to 
nRMSE of 12.2–16.4 %, assuming a maximum pollen concentration of 
104 pollen m− 3 (Kurganskiy et al., 2020). Further, we outperformed a 
previous study that predicted the same NAB pollen concentration 
dataset with in-situ flower observations collected by community scientist 
volunteers (Crimmins et al., 2023). We achieved higher and more sta
tistically significant Spearman correlations in this study: 58 % and 94.3 
% of Spearman correlations were statistically significant in Crimmins 
et al. (2023) and this study, respectively; the median Spearman corre
lation for Quercus spp. was 0.49 and 0.751 in Crimmins et al. (2023) and 
this study, respectively. When benchmarked against an alternative data 
source from citizen science (Fig. S13), the accuracy of our method is 
slightly lower (73.1 % Spearman correlations being statistically signif
icant), which might be due to the spatiotemporal biases of data contri
bution. The competitive performance of our model demonstrated the 
power of phenology data in pollen models and the great potential of 
PlanetScope-derived phenology data.

The accuracy of our method arises from the ability of PlanetScope- 
derived pollen phenology to explain intra-annual and inter-annual var
iations in pollen concentration. By empirically inferring the continuous 
change in pollen phenology in a year from the distribution of green-up/ 
down days among trees (Fig. 8), we moved beyond traditional pollen 
phenology modeling that relies on annual phenometrics (Clark et al., 
2014). Even without explicitly accounting for inter-annual variations in 
temperature, the PlanetScope method was able to explain some 
inter-annual variations in pollen phenology with the different times and 
distributions of green-up/down dates (Fig. 8, Fig. S10). This finding has 
previously been shown on a coarser resolution, with a remotely-sensed 
green-up date explaining inter-annual variations in ground-observed 
flowering dates (Delbart et al., 2015).

Our model was a simplified one, overlooking details such as differ
ential responses of vegetative and reproductive phenology to the envi
ronment (Geng et al., 2022) and non-phenological factors that influence 
pollen concentration, such as pollen dispersion (Latorre, 1999; Robi
chaud and Comtois, 2021; Zhu et al., 2024). Nevertheless, this model 
paves the way for building process-guided pollen models with tree-level 
vegetative and reproductive phenology as key processes (Scheifinger 
et al., 2013; D. S. W. Katz et al., 2023).

The out-of-sample accuracy of PlanetScope-derived pollen 
phenology of oak trees (Fig. 8, Fig. S11) suggested the possibility of 
predicting pollen concentration even at locations with limited prior 
observations. We suggest four enhancements before operationalizing the 
proposed workflow to inform decision-making in public health. First, in 
addition to the tree-level validation of the flowering phenology we 
presented, more fine-scale ground truths for pollen phenology are 
needed (Katz and Batterman, 2020). Examples are newly initiated 
community science data collection of pollen phenology (D. S. W. Katz 
et al., 2023) and within-city pollen concentration data (Weinberger 
et al., 2018). Second, our study was partly limited by the number of 
cities with publicly available street inventories. To ensure a sufficient 
number of cities for extrapolation, we were not able to perform 
out-of-sample tests with genera other than Quercus spp. Further model 
tuning and validation will benefit from obtaining street tree inventories 
from more cities. Apart from direct requests from cities, operationalized 
identification of trees with remote sensing data (Morueta-Holme et al., 
2024), such as the Auto Arborist dataset (Beery et al., 2022), may be 
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particularly efficient. Third, by focusing on phenology, our method 
addressed the relative change of pollen concentration but not the ab
solute magnitude of pollen peaks, which can be achieved by accounting 
for the total pollen production per tree and abundance and distribution 
of the taxa of interest (D. S. W. Katz and Carey, 2014; D. S. W. Katz et al., 
2020; Zhang and Steiner, 2022). Last, although this study retrospec
tively demonstrates the inference of pollen phenology, this method can 
be combined with accurate forecasting of vegetative phenology (Song 
et al., 2023; Taylor and White, 2020) to achieve near-term predictions 
for the early warning of pollen season. With around 60 pollen moni
toring stations around the US but far more widespread public health 
concerns on pollen allergy, this study provides the possibility of more 
spatially equitable access to pollen level forecasting.

5. Conclusions

We showed that high spatiotemporal resolution remote sensing data 
from PlanetScope is highly promising in inferring flowering and pollen 
phenology from vegetative phenology. On the tree level, PlanetScope- 
derived green-up time had a significant positive correlation with the 
field-observed flower onset time of six out of eight wind-pollinated 
species in a large observatory network (Section 3.1). We upscaled 
tree-level PlanetScope-derived vegetative phenology to the city level 
and accurately inferred pollen phenology, calibrated by a conterminous- 
scale high-quality dataset for airborne pollen concentration (Section 
3.2). This empirical method of inference achieved a median Spearman 
correlation of 0.567 and a nRMSE of 14.2 % across 14 wind-pollinated 
genera and seven cities of interest. For Quercus spp. (oak) that was 
present in all seven cities; our model achieved high out-of-sample ac
curacy (Spearman correlation: 0.691, nRMSE: 14.5 %) comparable with 
in-sample accuracy (Spearman correlation: 0.751, nRMSE: 13.5 %). Our 
proposed method is promising to describe and predict the pollen 
phenology of deciduous wind-pollinated tree taxa at locations without 
prior pollen concentration data. We further demonstrate how 
PlanetScope-derived vegetative phenology can be used to map varia
tions in pollen phenology within cities (a pollen allergy landscape) 
(Section 3.3), calling for future validation with fine-grained in-situ data. 
Using PlanetScope time series, our findings pave the way for the 
development of generalizable and refined process-based pollen models 
to inform decision-making in public health.
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Tosi, A., Vaghi, A., Martelli, A., Traina, G.M., Rivolta, L., Rivolta, F., Ortolani, C.M., 
2022. Ragweed pollen concentration predicts seasonal rhino-conjunctivitis and 
asthma severity in patients allergic to ragweed. Sci. Rep. 12 (1), 1. https://doi.org/ 
10.1038/s41598-022-20069-y.

Buonaiuto, D.M., Morales-Castilla, I., Wolkovich, E.M., 2021. Reconciling competing 
hypotheses regarding flower–leaf sequences in temperate forests for fundamental 
and global change biology. New Phytol. 229 (3), 1206–1214. https://doi.org/ 
10.1111/nph.16848.

Buonaiuto, D.M., Wolkovich, E.M., 2021. Differences between flower and leaf 
phenological responses to environmental variation drive shifts in spring 

Y. Song et al.                                                                                                                                                                                                                                    Science of Remote Sensing 11 (2025) 100205 

14 

https://doi.org/10.5281/zenodo.15080735
https://bookdown.org/yiluansong/RS4flower/
https://bookdown.org/yiluansong/RS4flower/
https://yiluansong.shinyapps.io/RS4flower_result/
https://yiluansong.shinyapps.io/RS4flower_result/
https://doi.org/10.1016/j.srs.2025.100205
https://doi.org/10.1016/j.srs.2025.100205
https://doi.org/10.5281/zenodo.15080735
https://bookdown.org/yiluansong/RS4flower/
https://bookdown.org/yiluansong/RS4flower/
https://www.aaaai.org/Aaaai/media/MediaLibrary/PDF%20Documents/NAB/NAB-Data-Release-Guidelines-Final-7-24-13.pdf
https://www.aaaai.org/Aaaai/media/MediaLibrary/PDF%20Documents/NAB/NAB-Data-Release-Guidelines-Final-7-24-13.pdf
https://www.aaaai.org/Aaaai/media/MediaLibrary/PDF%20Documents/NAB/NAB-Data-Release-Guidelines-Final-7-24-13.pdf
https://doi.org/10.1038/sdata.2017.191
https://doi.org/10.1073/pnas.2013284118
https://doi.org/10.1186/s40413-018-0203-6
https://doi.org/10.1007/s40629-023-00268-3
https://doi.org/10.1007/s40629-023-00268-3
https://doi.org/10.1175/JCLI-D-17-0863.1
https://openaccess.thecvf.com/content/CVPR2022/html/Beery_The_Auto_Arborist_Dataset_A_Large-Scale_Benchmark_for_Multiview_Urban_CVPR_2022_paper.html
https://openaccess.thecvf.com/content/CVPR2022/html/Beery_The_Auto_Arborist_Dataset_A_Large-Scale_Benchmark_for_Multiview_Urban_CVPR_2022_paper.html
https://openaccess.thecvf.com/content/CVPR2022/html/Beery_The_Auto_Arborist_Dataset_A_Large-Scale_Benchmark_for_Multiview_Urban_CVPR_2022_paper.html
https://github.com/bevingtona/planetR
https://github.com/bevingtona/planetR
https://doi.org/10.1038/s41598-022-20069-y
https://doi.org/10.1038/s41598-022-20069-y
https://doi.org/10.1111/nph.16848
https://doi.org/10.1111/nph.16848


phenological sequences of temperate woody plants. J. Ecol. 109 (8), 2922–2933. 
https://doi.org/10.1111/1365-2745.13708.

Campbell, T., Fearns, P., 2018. Simple remote sensing detection of Corymbia calophylla 
flowers using common 3 –band imaging sensors. Remote Sens. Appl.: Society and 
Environment 11, 51–63. https://doi.org/10.1016/j.rsase.2018.04.009.

CaraDonna, P.J., Bain, J.A., 2016. Frost sensitivity of leaves and flowers of subalpine 
plants is related to tissue type and phenology. J. Ecol. 104 (1), 55–64. https://doi. 
org/10.1111/1365-2745.12482.

Chamberlain, S.A., Szöcs, E., 2013. taxize: taxonomic search and retrieval in R. 
F1000Research 2, 191. https://doi.org/10.12688/f1000research.2-191.v2.

Chen, B., Jin, Y., Brown, P., 2019. An enhanced bloom index for quantifying floral 
phenology using multi-scale remote sensing observations. ISPRS J. Photogrammetry 
Remote Sens. 156, 108–120. https://doi.org/10.1016/j.isprsjprs.2019.08.006.

Chen, X., Wang, D., Chen, J., Wang, C., Shen, M., 2018. The mixed pixel effect in land 
surface phenology: a simulation study. Rem. Sens. Environ. 211, 338–344. https:// 
doi.org/10.1016/j.rse.2018.04.030.

Cheng, Y., Vrieling, A., Fava, F., Meroni, M., Marshall, M., Gachoki, S., 2020. Phenology 
of short vegetation cycles in a Kenyan rangeland from PlanetScope and Sentinel-2. 
Rem. Sens. Environ. 248, 112004. https://doi.org/10.1016/j.rse.2020.112004.

Chuine, I., Belmonte, J., 2004. Improving prophylaxis for pollen allergies: predicting the 
time course of the pollen load of the atmosphere of major allergenic plants in France 
and Spain. Grana 43 (2), 65–80. https://doi.org/10.1080/00173130410019163.

Clark, J.S., Salk, C., Melillo, J., Mohan, J., 2014. Tree phenology responses to winter 
chilling, spring warming, at north and south range limits. Funct. Ecol. 28 (6), 
1344–1355. https://doi.org/10.1111/1365-2435.12309.

Cook, B.I., Wolkovich, E.M., Davies, T.J., Ault, T.R., Betancourt, J.L., Allen, J.M., 
Bolmgren, K., Cleland, E.E., Crimmins, T.M., Kraft, N.J.B., Lancaster, L.T., Mazer, S. 
J., McCabe, G.J., McGill, B.J., Parmesan, C., Pau, S., Regetz, J., Salamin, N., 
Schwartz, M.D., Travers, S.E., 2012. Sensitivity of spring phenology to warming 
across temporal and spatial climate gradients in two independent databases. 
Ecosystems 15 (8), 1283–1294. https://doi.org/10.1007/s10021-012-9584-5.

Crimmins, T.M., Crimmins, M.A., Gerst, K.L., Rosemartin, A.H., Weltzin, J.F., 2017. USA 
National Phenology Network’s volunteer-contributed observations yield predictive 
models of phenological transitions. PLoS One 12 (8), e0182919. https://doi.org/ 
10.1371/journal.pone.0182919.

Crimmins, T.M., Vogt, E., Brown, C.L., Dalan, D., Manangan, A., Robinson, G., Song, Y., 
Zhu, K., Katz, D.S.W., 2023. Volunteer-contributed observations of flowering often 
correlate with airborne pollen concentrations. Int. J. Biometeorol. 67 (8), 
1363–1372. https://doi.org/10.1007/s00484-023-02506-3.

Crisp, H.C., Gomez, R.A., White, K.M., Quinn, J.M., 2013. A side-by-side comparison of 
Rotorod and Burkard pollen and spore collections. Ann. Allergy Asthma Immunol. 
111 (2), 118–125. https://doi.org/10.1016/j.anai.2013.05.021.

Dahl, Å., Galán, C., Hajkova, L., Pauling, A., Sikoparija, B., Smith, M., Vokou, D., 2013. 
The onset, course and intensity of the pollen season. In: Sofiev, M., Bergmann, K.-C. 
(Eds.), Allergenic Pollen: A Review of the Production, Release, Distribution and 
Health Impacts. Springer, Netherlands, pp. 29–70. https://doi.org/10.1007/978-94- 
007-4881-1_3.

D’Amato, G., Chong-Neto, H.J., Monge Ortega, O.P., Vitale, C., Ansotegui, I., Rosario, N., 
Haahtela, T., Galan, C., Pawankar, R., Murrieta-Aguttes, M., Cecchi, L., 
Bergmann, C., Ridolo, E., Ramon, G., Gonzalez Diaz, S., D’Amato, M., Annesi- 
Maesano, I., 2020. The effects of climate change on respiratory allergy and asthma 
induced by pollen and mold allergens. Allergy 75 (9), 2219–2228. https://doi.org/ 
10.1111/all.14476.

Davies, T.J., Wolkovich, E.M., Kraft, N.J.B., Salamin, N., Allen, J.M., Ault, T.R., 
Betancourt, J.L., Bolmgren, K., Cleland, E.E., Cook, B.I., Crimmins, T.M., Mazer, S.J., 
McCabe, G.J., Pau, S., Regetz, J., Schwartz, M.D., Travers, S.E., 2013. Phylogenetic 
conservatism in plant phenology. J. Ecol. 101 (6), 1520–1530. https://doi.org/ 
10.1111/1365-2745.12154.

Delbart, N., Beaubien, E., Kergoat, L., Le Toan, T., 2015. Comparing land surface 
phenology with leafing and flowering observations from the PlantWatch citizen 
network. Rem. Sens. Environ. 160, 273–280. https://doi.org/10.1016/j. 
rse.2015.01.012.
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