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ARTICLE INFO ABSTRACT
Keywords: Airborne pollen triggers allergic reactions, which can have public health consequences. Accurate airborne pollen
Airborne pollen concentration modeling and prediction rely on understanding plant reproductive phenology, particularly the

Flowering phenology
Time series analysis
Leaf-out phenology

timing of flowering and pollen release. Flowering and pollen phenology data are often collected through ground
observations and air sampling, but such in-situ data collection efforts are expensive and spatially sparse. In
contrast to in-situ data collection, satellite-based estimates of plant phenology could potentially enable large-scale
data collection, but it is challenging to detect the reproductive phenology of wind-pollinated flowers from space.
Here, we infer the reproductive phenology of wind-pollinated plants on the individual tree level and city level
using PlanetScope time series with a spatial resolution of 3 m and a daily revisit cycle. We complemented
PlanetScope data by in-situ flower and pollen observations at the two scales, leveraging the correlation between
vegetative and reproductive phenology. On the individual tree level, we extracted PlanetScope-derived green-up
time and validated its correlation to flowering time using flower observations in a national-scale observatory
network. Scaling up to the city level, we developed a novel approach to characterize pollen phenology from
PlanetScope-derived vegetative phenology, by optimizing two tuning parameters: the threshold of green-up or
green-down and the time lag between green-up/down and flowering. We applied this method to seven cities in
the US and 14 key wind-pollinated tree genera, calibrated by measurements of airborne pollen concentrations.
Our method characterized pollen phenology accurately, not only in-sample (Spearman correlation: 0.751,
nRMSE: 13.5 % for Quercus spp.) but also out-of-sample (Spearman correlation: 0.691, nRMSE: 14.5 % for
Quercus spp.). Using the calibrated model, we further mapped the pollen phenology landscape within cities,
showing intra-urban heterogeneity. Using high spatiotemporal resolution remote sensing, our novel approach
enables us to infer the flowering and pollen phenology of wind-pollinated plant taxa on a large scale and a fine
resolution, including areas with limited prior in-situ flower and pollen observations. The use of PlanetScope time
series therefore holds promise for developing process-based pollen models and targeted public health strategies
to mitigate the impact of allergenic pollen exposure.

1. Introduction the phenology, the timing of recurring biological events, of
wind-pollinated plants. Health risks from pollen exposure are likely to

Pollen is a trigger of allergic asthma and allergic rhinitis (hay fever), exacerbate under global change, reflected in earlier starts and often
imposing significant costs on public health (Reid and Gamble, 2009; longer durations of flowering seasons (Mo et al., 2017) and pollen sea-
D’Amato et al., 2020; Idrose et al., 2022; A. B. Singh & Kumar, 2022). sons (Anderegg et al., 2021; Ziska et al., 2011, 2019), as well as higher
The onset, duration, and intensity of pollen seasons are highly related to pollen concentrations (Ziska and Caulfield, 2000). Currently, the
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sparsity of pollen concentration data and the lack of operational
process-based (‘numerical’) pollen models (D. Katz et al., 2024), espe-
cially outside of Europe and Australia, hinder accurate assessments and
timely public health responses to changing pollen seasons exacerbated
by global changes. The elevating risks call for major improvements in
the collection of flower and pollen phenology data on large scales and
fine resolutions, in order to enhance mechanistic understanding and
prediction of the reproductive phenology of wind-pollinated plants.

Previous research on plant reproductive phenology for public health
has been limited by insufficient observational data. In the field of
aerobiology, pollen phenology is studied with airborne pollen concen-
tration data from air sampling, generally through national pollen
monitoring networks (Scheifinger et al., 2013). These pollen concen-
tration data are collected with systematic protocols, serving as a
high-quality source for pollen modeling. However, air sampling of pol-
len is expensive, and the stations are temporally and spatially sparse
(Anderegg et al., 2021). Aggregated over a large area and identified to
the family or genus level, pollen samples often do not allow us to study
fine-scale spatial variations and intra-genus variations. An exception is
pollen monitoring in Europe, where pollen concentration data are often
processed bi-hourly in Europe (Galan et al., 2014) and soon to be
generated by automated instruments in real time (Immler and Tziastas,
2024). In the field of ecology, ground observations of flowering
phenology, from observatory networks and community science, have
been correlated with pollen phenology (Crimmins et al., 2017; Elmen-
dorf et al., 2016; Templ et al., 2018). These phenological observations
have a larger spatial coverage and a finer taxonomic resolution
compared to air sampling data but are limited by subjectivity in the
classification of phenophases (Donnelly et al., 2022) and spatiotemporal
sampling bias (Pearse et al., 2017).

Although both air samples and ground observations have been used
to advance pollen modeling, these models still need to be improved in
accuracy and spatial robustness (Scheifinger et al., 2013; Suanno et al.,
2021; Zhu et al., 2024). On the one hand, data-driven pollen models
using statistics (Frenguelli et al., 1989) or machine learning (Seo et al.,
2019; Zewdie et al., 2019; F. Lo et al., 2021) are usually site-specific and
sometimes lack accuracy (Chuine and Belmonte, 2004; Maya-Manzano
et al.,, 2021). It is therefore challenging to extrapolate locally-trained
pollen models to locations without prior in-situ data collection. Inte-
gration of land surface phenology as predictors has been suggested to
improve data-driven models (Huete et al., 2019; F. Lo et al., 2021). On
the other hand, process-based pollen models that explicitly account for
plant reproductive phenology, pollen production, and pollen dispersion
have been shown to be promising in predicting pollen seasons with
robustness across Europe (Chuine and Belmonte, 2004; Sofiev et al.,
2006, 2015, 2024; Vogel et al., 2008; Garcia-Mozo et al., 2009; Mimi¢
et al., 2021; Verstraeten et al., 2022, 2024) and predicting spatial var-
iations of pollen concentrations within cities in the US (D. S. W. Katz
et al.,, 2023). Several gaps exist in the current process-based pollen
models outside of Europe: they are rarely updated with near real-time
observations; they are not available on an operational scale; they are
usually limited in spatial resolution, missing important heterogeneity
within cities (Katz and Batterman, 2020). To create generalizable and
granular process-guided models of airborne pollen, we need to go
beyond existing empirical data and obtain plant reproductive phenology
data with a large spatial coverage and fine spatial resolution.

To overcome the data challenge, remote sensing has been explored to
inform pollen and flower phenology, building on the correlation be-
tween reproductive phenology and vegetative phenology. Leaf out and
flowering, are tightly linked phenological events in a plant’s life cycle,
evolved to occur in a predictable sequence with stable time intervals
(Davies et al., 2013; Guo et al., 2023). Such flower-leaf sequences are
crucial to plant fitness in temperate regions (Buonaiuto and Wolkovich,
2021; Guo et al., 2023), such as through effective wind pollination in
flowering-first species (Buonaiuto et al., 2021). Such a biophysical
relationship motivates the inference of reproductive phenology from
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remotely-sensed vegetative phenology (Davies et al., 2013). For
example, the onset of bud burst detected from Moderate Resolution
Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation
Index (NDVI) and Global Inventory Monitoring and Modeling System
(GIMMS) NDVI were found to correlate with the onset of birch flowering
(Karlsen et al., 2008) and birch pollen season (Hggda et al., 2002),
respectively, on continental and decadal scales. Interannual variations
in the flowering time of multiple plant functional types have been
explained by remotely sensed green-up time (Delbart et al., 2015).
Moving beyond correlation, data-driven predictive pollen models have
also benefited from incorporating MODIS Enhanced Vegetation Index
(EVI) as a predictor (Huete et al., 2019; F. A. Lo, 2020; Yang et al.,
2022). These studies show the feasibility of using satellite remote
sensing to greatly expand the spatial coverage of reproductive
phenology data and to improve pollen models.

Despite their broad spatial coverage, satellite remote sensing data
products previously used to study flowering and pollen phenology have
a limited spatial resolution, specifically 250 m (MODIS), 500 m
(MODIS), or 8 km (GIMMS). Land surface phenology detected on this
resolution suffers from the mixed pixel problem (X. Chen et al., 2018).
This is particularly problematic for urban landscapes that are highly
heterogeneous in land cover and plant species. Given that pollen expo-
sure and plant reproductive phenology are highly spatially heteroge-
neous within a city (D. S. W. Katz et al., 2019; D. S. W. Katz and Carey,
2014), land surface phenology at a coarse spatial resolution does not
satisfy the need for spatially-explicit pollen modeling for public health.

With a spatial resolution of 3 m and a daily revisit cycle, PlanetScope
data provide an excellent opportunity to gather plant reproductive
phenology data on a large scale and at an individual tree level. We
identified the untapped potential of PlanetScope data for public health
from two streams of research. On the one hand, PlanetScope data have
been used to successfully detect large and brightly-colored flowers
within a stand, with indices designed to capture spectral signatures of
flowers, such as enhanced bloom index (EBI) (Campbell and Fearns,
2018; B. Chen et al., 2019; Dixon et al., 2021). Although supporting the
use of PlanetScope to detect canopy-level phenological variations, the
PlanetScope-derived bloom index can hardly be applied to
wind-pollinated flowers that are small and inconspicuous (Kim et al.,
2020). Reproductive phenology of wind-pollinated flowers will there-
fore largely rely on the inference from vegetative phenology. On the
other hand, PlanetScope-derived EVI has been shown to be a reliable
data source for tree-level vegetative phenology, validated by other
remote sensing data products (Moon et al., 2021) and ground observa-
tions (Moon et al., 2022; Zhao et al., 2022; Y. Liu et al., 2024). Despite
promising applications of PlanetScope data to detect spatial variations
among individual tree canopies and to derive vegetative phenology, it
has not yet been used to infer tree-level flowering phenology from
vegetative phenology. Further, to our knowledge, there has not been
research linking PlanetScope directly to pollen phenology, which is
central to modeling pollen exposure.

In this study, we assessed the potential of using vegetative phenology
data extracted from PlanetScope to infer the flowering and pollen
phenology of wind-pollinated trees. Specifically, the study focused on
answering the following research questions at two scales (Fig. 1,
Fig. S1).

Q1: On the tree level, does PlanetScope-derived vegetative
phenology correlate with flowering phenology monitored by field
observations?

Q2: Upscaled from the tree level to the city level, can PlanetScope-
derived vegetative phenology be used to accurately infer pollen
phenology characterized by airborne pollen concentrations? In
particular, does this inference extrapolate over a large spatial scale,
to locations where airborne pollen concentration data are
unavailable?
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Fig. 1. Simplified flow diagram of data and methods used in this study, and corresponding research questions. Rounded rectangles represent source datasets.
Rectangles represent derived variables to analyze. Ellipses represent data analysis steps.

Q3: Scaling back to the tree level, can PlanetScope-derived vegeta-
tive phenology be used to explore fine-scale intra-urban heteroge-
neity of pollen phenology, i.e., a pollen allergy landscape?

In answering these three questions, we developed a novel workflow
for obtaining cross-scale reproductive phenology data from PlanetScope
time series. Our workflow has two core ideas: upscaling tree-level green-
up/down time to the city-level green-up/down phenology, and tuning
two parameters to calibrate city-level green-up/down phenology with
city-level in-situ pollen phenology.

2. Materials and methods
2.1. Data description

2.1.1. Tree-level flowering observations

To test whether PlanetScope can capture tree-level variations in
flowering phenology, we retrieved plant phenology observations from
the National Ecological Observatory Network (NEON) (DP1.10055.001)
that were integrated into the USA National Phenology Network (USA-
NPN) (Elmendorf et al., 2016; Crimmins et al., 2017; National Ecological
Observatory Network, 2020). At each site and every year, 90-100 tag-
ged individual plants were observed in situ by trained technicians for
their vegetative and reproductive phenophase status with varying
sampling frequencies up to three times per week, following the pheno-
phase definitions and protocols of NPN (Denny et al., 2014). We
downloaded individual phenometrics from the NEON data submitted to

NPN, which are the estimates of the dates of phenophase onsets and
ends, measured from a series of consecutive "yes" phenophase status
records. In this study, we used flower and leaf onset dates, which are the
time of first “yes” observations for an individual tree in a given year. To
complement the phenological data, we retrieved the accurate co-
ordinates of tagged NEON trees using the R package geoNEON (National
Ecological Observatory Network, 2023). We focused on primary sam-
pling sites within the conterminous United States that have available
coordinates of tagged individual plants (Fig. S2). We included data from
2018 to 2022, as fully operational PlanetScope data collection started in
2018 (Fig. S3).

We focused on 14 deciduous wind-pollinated tree species with
considerable public health impacts and high abundance in the conter-
minous United States (Crimmins et al., 2023; F. Lo et al., 2019): Acer
spp. (maple), Alnus spp. (alder), Betula spp. (birch), Carya spp. (hickory),
Celtis spp. (hackberry), Fraxinus spp. (ash), Juglans spp. (walnut),
Liquidambar spp. (sweetgum), Morus spp. (mulberry), Platanus spp.
(plane, sycamore), Populus spp. (poplar, aspen, cottonwood), Quercus
spp. (oak), Salix spp. (willow), and Ulmus spp. (elm). Ulmus spp. were
considered to have an early- and a late-flowering group, whose
phenology was analyzed separately.

2.1.2. City-level pollen concentration from air sampling and street-tree
inventory

To examine the potential of using PlanetScope for city-level pollen
phenology and to inform public health, we obtained consistent and ac-
curate pollen concentration data from stations associated with the
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American Academy of Allergy, Asthma & Immunology (AAAAI) Na-
tional Allergy Bureau (NAB) (AAAAL, 2022) (Figs. 2 and 3). Ataround 80
stations located throughout the conterminous US, airborne pollen was
sampled daily using volumetric impactor samplers (mostly Burkard
samplers and sometimes Rotorod samplers) (Portnoy et al., 2004; M.
Bastl et al., 2023; Levetin et al., 2023), and then classified to the genus or
family level and counted by NAB-certified operators. Despite possible
differences in absolute pollen concentration estimated using Burkard
and Rotorod samplers, these two methods are consistent in quantifying
the seasonal trends of pollen of the same taxa (Frenz, 1999; Crisp et al.,
2013; Crimmins et al., 2023), allowing us to study taxa-specific pollen
phenology. The NAB dataset is the most commonly used data source for
the description and prediction of pollen phenology in public health and
ecological research in North America. We obtained pollen concentration
data collected from 2003 until late 2023 (Fig. 3). Data were available
during most springs and summers after the establishment of sampling
stations, with missing data when airborne concentrations were low
(Fig. S4). As in the tree-level analysis, we focused on the pollen
phenology of 14 wind-pollinated tree genera (Acer, Alnus, Betula, Carya,
Celtis, Fraxinus, Juglans, Liquidambar, Morus, Platanus, Populus, Quercus,
Salix, and Ulmus).

To complement the pollen concentration data, we obtained street
tree inventories in selected cities (Figs. 2 and 4; details on sources of tree
inventories in Table S1). Necessary reprojections were performed to
convert all coordinates in street tree inventories to longitude and lati-
tude. The taxonomy of street trees was resolved with the R package
taxize (Chamberlain and Szocs, 2013) for selecting trees in the genus of
interest. When there were more than 2000 recorded trees of a genus in a
city, we randomly selected 2000 trees (Psutka and Psutka, 2019).

We focused on seven US cities with an available street tree inventory
and a nearby pollen monitoring station (Fig. 2): Austin (AT), Detroit
(DT), Denver (DV), Houston (HT), New York (NY), Seattle (ST), and
Tampa (TP). Most focal cities have a pollen monitoring station within
the city, with a mean distance from the pollen monitoring station to the
centroid of all censused street trees ranging from 3.7 km to 41 km. This is
well within the footprint of a volumetric pollen monitoring station,
which can cover a region within a radius of about 100 km (M. Bastl et al.,
2023). Two exceptions were that Denver’s pollen concentration data
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were from Colorado Springs (mean distance 97 km) and that Detroit’s
pollen concentration data were from Sylvania (mean distance 91 km). Of
the seven stations, most were confirmed to use Burkard samplers, except
that Colorado Springs might have used a Rotorod sampler.

As an additional data source for validation, we retrieved flower and
pollen cone observations from the USA National Phenology Network
(NPN) dataset (Rosemartin et al., 2018). Data were contributed by
volunteers through the Nature’s Notebook mobile app. We downloaded
phenophase status observations of the 14 genera of interest from 2000 to
2024. We focused on observations for the following phenophases rele-
vant to plant reproduction: "Full pollen release (conifers)", "Pollen
release (conifers)", "Pollen cones (conifers)", "Open pollen cones (co-
nifers)", "Full flowering (50 %)", "Flowers or flower buds", and "Pollen
release (flowers)." We kept observations within a 500 km radius of each
of the seven NAB stations of interest in order to include sufficient data
points that are relevant to local pollen concentration. For each taxon,
site, and date, we calculated the percentage of “Yes” observations for the
above phenophases out of all “Yes” and “No” observations (Crimmins
et al., 2023). This percentage between 0 % and 100 % is a proxy for the
reproductive status of plants in an area (Fig. S5) that could later be used
to compare with inferred pollen phenology.

2.1.3. PlanetScope reflectances for vegetative phenology

We retrieved PlanetScope images from 2017 to 2023 for all trees
involved in the analyses, including sampled trees at NEON sites and
street trees from 14 wind-pollinated tree genera in seven selected US
cities (Fig. 4). We downloaded the PlanetScope atmospherically cor-
rected surface reflectance product (ortho_analytic_4b_sr) (Planet Team,
2017) through the Planet API, using a custom package based on the R
package planetR (Bevington et al., 2024). We applied the “harmonize”
tool in the Planet API with “Sentinel-2” as the target sensor, in order to
make all PlanetScope data consistent and approximately comparable to
Sentinel-2 data (Kington and Collison, 2022). All images obtained were
acquired during the day (sun elevation >0 m). At the coordinates of the
trees of interest, we obtained the reflectances in the red, green, blue, and
near-infrared bands. For quality control, we applied Useable Data Masks
(UDM2) (Planet Team, 2023) to include only pixels that were clear, had
no snow, ice, shadow, haze, or cloud, and had algorithmic confidence in
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Fig. 2. Map of seven studied cities with street tree inventory (blue squares) and pollen monitoring stations associated with the National Allergy Bureau (NAB) (red
crossed circles). Street tree inventory was used to locate known wind-pollinated trees and to extract their phenological signals from remote sensing. Pollen moni-
toring stations provide pollen concentration data for calibration and validation of the model that predicts pollen phenology with remote sensing data. Pollen
monitoring stations were located within 100 km of the centroid of the city’s street trees. Other NAB pollen monitoring stations not used in this analysis are marked in

gray crossed circles.
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Fig. 3. Climatologies of daily pollen concentration (grains m~>) of 14 key pollen-producing genera in studied cities. Climatologies were calculated by averaging the
data for the same day of the year across all years over the period 2003-2023. Most genera have pollen peaks in the spring, except for Ulmus which have pollen peaks
in both the spring and fall. Cities are ordered according to their latitude, showing latitudinal trends in the time of pollen peak. Data are from the National Allergy

Bureau (NAB) pollen monitoring stations.

classification >80 %. Given little information on the size and shape of
trees, we obtained reflectances at the focal coordinates, instead of within
polygons that cover tree canopies (Dixon et al., 2023). For each date,
pixel, and band, we computed mean reflectances if there were multiple
visits in a day.

2.2. Data processing

2.2.1. Curating ground-observed flowering phenology data

In processing the NEON flowering phenology data, we exclude NEON
sites located outside the conterminous United States. We also excluded
sites situated in the Mediterranean climatic zone (all sites in California),
where plant phenology is primarily driven by precipitation instead of
temperature, distinct from other parts of the conterminous US. We
focused on wind-pollinated tree species that were widely represented in
the NEON data (>50 records). We removed outliers of spring flower
onset dates that were biologically implausible for the species present in
the dataset (later than day 150).

2.2.2. Curating air-sampled pollen concentration data
We processed NAB pollen concentration data to characterize pollen
phenology in several steps.

1) In order to include at least one full pollen peak, we extended data in
each year in both directions, into day-of-year (DOY) 275 (Oct 2) in
the previous calendar year and into day 90 (Mar 30) in the following
calendar year. Data on day 366 in leap years were ignored. This
extended duration covers a total of 546 days.

We removed combinations of genus and city when there were no
trees of interest in the street tree inventory, or there were no more
than 30 pollen concentration records greater than or equal to
0 grains m~>. We removed Fraxinus spp. from New York and Detroit

2

—

from our dataset due to the mass die-off of these trees in these two
cities during our study period.
3) To compress extreme values and stabilize the variance, we trans-

formed all pollen concentration values [pollen],(t) to their square

root [pollen]gcT(t) (K. Bastl et al., 2018; Bonini et al., 2022). Here, t

represents the day of year. Indices g, c, T represent genus, city, and
year, respectively.

In order to focus on single pollen peaks for plant genera that have
both early- and late-flowering variations (e.g., Ulmus spp.), as well as
to reduce the confounding effect of outliers outside the reproductive
season, we constrained the pollen seasons for each taxon, setting the
pollen concentration outside the season to zero. Genus-specific pol-
len seasons were determined by summing the total pollen concen-
tration over all cities and years, fitting a Gaussian kernel, calculating
a window of mean + 1.96 x standard deviation (Zhang and Steiner,
2022), and extending the window by 50 days on both ends (Fig. S6).
An exception was that the early and late pollen windows of Ulmus
spp. were detected by fitting a Gaussian mixture model with two
peaks.

4

—

To handle short gaps of missing data within the pollen peaks and
reduce the impacts of outliers, we gap-filled and smoothed the time

series with weighted Whittaker smoothing S( [pollen]gcT(t)> (Eilers,

2003, 2004). Here S refers to a weighted Whittaker smoothing
operation.

2.2.3. Calculating enhanced vegetative index from PlanetScope reflectances

In order to characterize tree-level vegetative phenology, we used
reflectances from PlanetScope images to extract phenological metrics,
specifically green-up or green-down time, for each individual tree of
interest. We performed the following steps.
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Genus
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Fig. 4. Asubset of street trees in Detroit overlayed on a true-color PlanetScope image on May 8, 2017. The extent of the area is 83.1630°W to 83.1381°W longitude and
42.3869°N to 42.4054°N latitude. The true-color image was constructed with the reflectances in the red, green, and blue bands, with brightness adjusted. The colors of
points indicate street trees of different genera. Note that as we show only a small part of Detroit, the genera here do not represent all allergenic genera present in Detroit.

1) We calculated the enhanced vegetation index (EVI) (H. Q. Liu and
Huete, 1995) (Eqn. (1)). PlanetScope EVI has been shown to accu-
rately extract leaf phenology metrics validated by local digital
camera imagery (PhenoCams), robust to different atmospheric con-
ditions and less likely to saturate in densely vegetated areas
compared to PlanetScope normalized difference vegetation index
(NDVI) (Wu et al., 2021).

2.5 (NIR — Red)

EVI=
NIR +6 x Red — 7.5 x Blue + 1

(Equation 1)

We used the following criteria to filter out possibly erroneous EVI
values: reflectances in all visible bands were positive values, and EVI
was between zero and one.

2) We extended the time series in each year from day 275 (Oct 2) in the
previous calendar year to day 90 (Mar 30) in the following year
(spanning 546 days) in order to include at least one full growing
season with green-up and green-down. This step was necessary for
the detection of green-up day when EVI increases from the minimum
before the New Year, and the detection of green-down day when EVI
decreases to the minimum after the New Year. We gap-filled and
smoothed all extended time series EVI(t) with weighted Whittaker
smoothing S(EVI(t)) (Kong et al., 2019).

3) We selected a time series of EVI with significant seasonality. In
particular, we fitted a simple linear regression model and then three
piecewise regression models with one, two, and three change points,
respectively (Eqn. (2)) (Beaulieu and Killick, 2018).

Model 1 : S(EVI(t)) =4 + Bt + &,

Model 2,3,4 take the following form with m = 1,2,3 respectively:

A+ Bit + &, t<c¢
<
S(EVI(D)) = Lt Bt e <t (gouation 2)
Amsr + Bmsrt + &, Cm <t

EVI time series from each genus, city, year, and tree were analyzed
separately, but we omit the indices here for simplicity. In Model 1, t
represents the time in days, 1 and f represent the intercept and trend
and ¢, is white noise. In Models 2-4, m represents the number of
changepoints, c,, (m = 1,...,3) represent the timing of change points,
and 11, ...,Am and B, ..., represent the intercept and trend in each
segment. Piecewise regression models were fitted with R package
segmented (Muggeo, 2008). We ranked the four models according to
the Akaike information criterion (AIC). If a simple linear regression
was the best model, we discarded the time series as it may lack
seasonal changes in greenness.

2.3. Inferring reproductive phenology with PlanetScope

2.3.1. Inferring flowering phenology on the tree level

For individual trees at NEON sites (Fig. S1) monitored for phenology,
we used the EVI time series to identify the green-up phases empirically
(Fig. 5). The end of a green-up phase (usually in the summer) was
determined as the day of year when EVI reaches the maximum in the
growing season. The start of a green-up phase (usually in the winter) was
then determined as the day of year when EVI is at the minimum, prior to
the end of the green-up phase. We then determined the timing of green-
up at the 50 % threshold (usually in the spring). This empirical method
of defining green-up/down time has been widely applied to remote-
sensing data in order to be compatible with different plant functional
types with various seasonality that exhibit intra-annual changes in
greenness (Moon et al., 2021). We tested the correlation between the 50
% green-up time and the flowering time measured by the day of flower
onset in the corresponding year from 2018 to 2022. We assessed the
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Fig. 5. Extraction of tree-level phenological metric from PlanetScope data for wind-pollinated trees sampled at the National Ecological Observatory Network
(NEON). We show two trees at Harvard Forest & Quabbin Watershed (HARV, 42.53691° N, 72.17265° W) and Oak Ridge (ORNL, 35.96413° N 84.28259° W) sites as
examples. Black points are Enhanced Vegetation Index (EVI) calculated from PlanetScope reflectances at the coordinates of the trees of interest. Green lines are
smoothed EVI. Green shades indicate the period of green-up extracted from smoothed EVI curves, spanning the time with minimum EVI in the winter and the time
with maximum EVI in the summer in each growing season. Vertical green lines are 50 % green-up time in each growing season, which is the time when EVI crosses 50

% of the range between minimum EVI and maximum EVI.

Pearson correlation coefficients and the significance of the correlations
across all sites.

2.3.2. Inferring pollen phenology on the city level

To infer city-level pollen phenology from tree-level vegetative
phenology monitored by PlanetScope, we developed the following
nonparametric algorithm with two tuning parameters (Fig. 6, Algorithm

A

Tree i from genus g
incity ¢, year T 100% green-up

EVI curve

50% green-up
(from PlanetScope)

1, Eqns. (3)-(7)). We first extracted the timing of green-up/down events
for individual trees at various thresholds based on their EVI curves.
These individual events were then upscaled to city-level vegetative
phenology. Next, we applied various time lags to vegetative phenology
to derive city-level pollen phenology. Finally, we optimized thresholds
and lags with air-sampled city-level pollen phenology. We describe the
details of the algorithm below.

B

95 100 105

Day 100
D C
Qenus 9, Pollen concentration Genus g,
city c, ,’®,  (from National Allergy Bureau) city c,
year T P / year T '
\
s
l‘ *\
0,0,/0 h\Q

95 100 105

95 100 106

Fig. 6. Nonparametric algorithm for inferring pollen phenology from vegetative phenology derived from PlanetScope. The model has four main steps: (A) Extract
tree-level green-up/down date at threshold 6, (e.g., g = 50 %). (B) Upscale to city-level leaf phenology. (C) Shift to city-level pollen phenology with leaf-pollen lag

bgc (e.8., 6 = —3 days). (D) Compare with city-level pollen concentration.
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1) We first extracted the timing of green-up/down for all trees of in-
terest as the day of year when their growing season EVI curves first
cross the green-up/down threshold 6, (Eqn. (3)). We used a similar
algorithm to that described in section 2.3.1 (Fig. 5). The end of a
green-up phase (usually in the summer) was determined as the day of
year when EVI reaches the maximum in the growing season. The
start of a green-up phase was then determined as the day of year
when EVI is at the minimum (usually in the previous winter), prior to
the end of the green-up phase. Similarly, the start of a green-down
phase (usually in the summer) was determined as the day of year
when EVI reaches the maximum in the growing season; the end of a
green-down phase (usually in the following winter) was then deter-
mined as the day of year when EVI is at the minimum, after the start
of the green-down phase. We then determined the timing of green-
up/down at multiple thresholds, including 30 %, 40 %, 50 %, 60 %,
and 70 % green-up for genera that flower in the spring (all except
late-flowering Ulmus spp.), and 70 %, ..., 30 % green-down for late-
flowering Ulmus spp.

tyreen—up (65) = min{t | EVI(t) > 6,(max,(EVI(t)) — min(EVI(t)))}
treak = min{t | EVI(t) > max,(EVI(t))}
. {tttheakand }
tgreen—down (gg) = min
EVI(t) < 0,(max,(EVI(t)) — min, (EVI(t)))

0, € {30%, 40%,50%, 60%,70%}
(Equation 3)

Algorithm 1. Algorithm for inferring city-level pollen phenology from
tree-level vegetative phenology.

1: Input: tree-level EVI curves, city-level pollen phenology

2: Parameters: 0, (green-up/down threshold), 5, (leaf-pollen lag)

3: Step 1: Extract timing of green-up/down

4: for each tree i in genus g, city ¢, and year T do

5 Determine green-up/down timing tgreen-up/down (6g) based on EVI curves and
green-up/down thresholds 6,.

6: end for

7: Step 2: Upscale to city-level vegetative phenology

8: for each day t in genus g, city c, and year T do

9: Calculate frequency of green-up/down events pgcr(t; 6y).
10: end for
11: for each genus g, city ¢, and year T do

12: Apply Whittaker smoothing and normalization to pgr(t; 6,) to obtain city-level
vegetative phenology wec1(t; 6y).

13: end for

14: Step 3: Shift to city-level pollen phenology

15: for each genus g, city ¢, and year T do

16: Shift city-level vegetative phenology ygc1(t; 6;) by &g to obtain city-level
pollen phenology ¢gcr(t; bg, gc)-

17: end for

18: Step 4: Normalize NAB-derived city-level pollen concentration

19: for each genus g, city ¢, and year T do

20: Normalize transformed pollen concentration time series , / [pollen],;(t) before

and after Whittaker smoothing to obtain NAB-derived city-level pollen phenology
Mger(t) and zger(t).

21: end for

22: Step 5: Calibrate tuning parameters

23: for each threshold 6,, genus g, and city ¢ do

24: Perform a grid search to find optimal Egc(ﬂx) that minimize total nRMSE
between ¢gc1(t; b5, 5gc) and mge1(1).

25: end for

26: for each genus g do

27: Using 335(08), perform a grid search to find optimal §g that minimize total
nRMSE between ¢.r(t; 0, Egc (0g)) and mger(t).

28: Using Eg, find optimal Sgc.

29:

30: Output: Optimized PlanetScope-derived city-level pollen phenology ¢ (t; Eg,

end for

Sgc) with best-fit parameters ag and Sgc.
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Note that the first tuning parameter in our model is 6, the green-up
or green-down threshold in the growing season EVI time series that is
used to obtain green-up/down time. We allowed the threshold to
vary by genus g.

2) Given that our pollen concentration data for validation are on the

3

—

city level rather than tree level, we upscaled the tree-level green-up/
down time to the city-level green-up/down frequency pg.r(t;6;) by
summarizing the frequency of inferred green-up/down events at
green-up/down threshold 6, on day t in a given genus, city, and year.
We then applied a weighted Whittaker smoothing and a normaliza-
tion such that it sums up to one over all days in a year (Eqn. (4)).

S(pger (£:02))

= (Equation 4)
S (pr(:64)) !

Vecr (t? Hg)

The resulting city-level vegetative phenology y/gcT(t; 6,) is concep-
tually similar to a probability density function of observing green-
up/down events.

Building on the biophysical and empirical relationships between
vegetative and reproductive phenology, we assumed that the time of
spring pollen emission and the time of leaf-out of a tree has a rela-
tively stable time lag given a specific climate (Buonaiuto and Wol-
kovich, 2021; Ma et al., 2021; Guo et al., 2023). Late-flowering
Ulmus spp. is an exception (Wozniak and Steiner, 2017), with little
knowledge of the mechanisms of their flowering phenology. We
assumed that their flowering time is associated with the senescence
phases of vegetative development, similar to other late-flowering
species (Rojo et al., 2022).We shifted the city-level vegetative
phenology .1 (t; 6) to the city-level pollen phenology ¢g.r (t; 65, 5¢c)
by applying leaf-pollen lags &, (Eqn. (5)). We allowed leaf-pollen
lags to range from —90 days to 90 days (+3 months), at the inter-
val of 1 day. We allowed the lag to vary by both genus and city. We
acknowledge that this method simplifies the duration of pollen
emission to a single pollen emission date (Dahl et al., 2013), hence
only capturing the variations in city-level pollen concentration
caused by the variations in pollen emission among trees but not
within individual trees.

Pyer (8 0g: Oge) = Yer (£ — Oe; O) i
5 € [-90,90] N 2 (Equation 5)
Note that the second tuning parameter in our model is g, which is
the time lag between the timing of leaf phenology and pollen
phenology.

4) We scaled the air-sampled city-level pollen concentration to one

comparable to PlanetScope-derived city-level pollen phenology,
providing city-level pollen phenology for calibration and assessment.
We performed normalization to transformed pollen concentration

time series , /[pollen],.(t) to remove the spatiotemporal differences

from local vegetation cover, pollen productivity, and pollen sam-
pling methods. We normalized pollen concentration before and after
Whittaker smoothing to obtain NAB-derived city-level pollen
phenology ITy.r(t) and zgr(t) for model assessment and calibration,
respectively (Eqn. (6)).

[ponen]gcT(t)
Mer(t) =
525y /Ipollenly (1) ) . .
¢ quation
s(,/Ipollen].,
) (y/Ipolien].+(1) )

;S( [pollen],.,(¢) )
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5) We assume that NAB-derived city-level pollen phenology mgr(t)
matches PlanetScope-derived city-level pollen phenology 40gcT(t; 58,
Egc) with optimized green-up/down threshold §g and optimized leaf-

pollen lag 3gc. Therefore, we performed a two-step grid search to
optimize 6; and &, based on the normalized root mean square error
(nRMSE) between PlanetScope and NAB-derived pollen phenology
(Eqn. (7)). Here, we normalized RMSE by the range of NAB-derived
city-level pollen phenology 7zgr(t) (Jeon et al., 2018; D. Singh and

Singh, 2020). We first selected the leaf-pollen lag Sy (6,) for each
green-up/down threshold 6, that minimized total nRMSE for each

genus and city. We then selected the green-up/down threshold @8

that minimized total nRMSE for each genus. We used ég to find 3.
define

nRMSE(x, %) = | /%Z’k; (x — X¢)? / (max(x) — min (xg))

Step 1:

By (6) =arg min{ZnRMSE (7ger (t), Per (t: 0, 5ec) ) }

& T

Step 2:

9, = arg min{ZZnRMSE (7ger (), ger (£ O, B (6))) }
g c T

3z:c = ggc (ag)
(Equation 7)
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Please see Supplementary Note for details on the number of pa-
rameters. The PlanetScope-derived vegetative phenology modified by
the optimized threshold and lags fﬂgcr(f% §g,3gc) was considered the

optimized PlanetScope-derived city-level pollen phenology.

We assessed the accuracy of PlanetScope-derived city-level pollen
phenology @1 (& gg, Egc) using its Spearman correlation coefficients and
nRMSE with NAB-derived city-level pollen phenology g r(t). Notably,
we compared the Spearman correlation coefficients and RMSE for
inferring pollen phenology both in-sample and out-of-sample. In-sample
tests assessed the ability of the PlanetScope method to characterize
variations in pollen phenology, whereas out-of-sample tests assessed the
effectiveness of the PlanetScope method to infer pollen phenology for
cities with no prior pollen concentration observations. For in-sample
tests, all cities were used in the optimization of parameters. For out-
of-sample tests, we conducted leave-one-out cross-validation. Specif-
ically, we removed a random city from the training dataset at a time and
optimized threshold and lags in the remaining cities. To predict the lag
for the city held for validation, we assumed a linear relationship be-
tween the lag and the climate of the city (Fig. S7). To avoid overfitting,
we used a simple linear relationship with one predictor representing the
long-term temperature of each city. Specifically, we used the mean
annual temperature in the TerraClimate Climatologies (1981-2010)
dataset (Abatzoglou et al., 2018). We used long-term average temper-
atures from a past period as the method is based on the mechanistic
assumption that the leaf-flower relationship is shaped by the long-term
climate of the area and remains relatively stable over time (Davies et al.,
2013; Guo et al., 2023). With an optimized threshold and a predicted
lag, we subsequently inferred pollen phenology from vegetative
phenology at the city held for validation. As the out-of-sample tests rely
on extrapolation over a climatic gradient, we could only implement
them for Quercus spp. that were present in all seven cities studied.

In addition to validation with NAB data, we compared the inferred
pollen phenology with the percentage of local “Yes” observations of
flower and pollen cones from NPN data. As these two variables are on
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Fig. 7. Correlation between 50 % green-up time from PlanetScope and flower onset time from the National Ecological Observatory Network (NEON). 50 % green-up
time was calculated as the time when PlanetScope-derived Enhanced Vegetation Index crosses 50 % of the range between its minimum and maximum for an in-
dividual tree in a growing season. Flower onset time was calculated as the time when flowers were first observed for an individual tree in a year. Different colors

indicate NEON sites.
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Fig. 8. Comparing city-level pollen phenology derived from PlanetScope and from airborne pollen concentration monitored at the National Allergy Bureau pollen
monitoring stations. City-level pollen phenology is standardized pollen concentration that sum up to one for each station, year, and genus. (A) Pollen phenology
inferred from PlanetScope-derived vegetative phenology tuned to the optimal green-up/down thresholds and leaf-flower lags (lines) compared to pollen phenology
inferred from airborne pollen concentration (points). Pollen phenology from both data sources was standardized to probability density distribution within each city
and year to allow comparison. Here we show examples of Quercus spp. (0oak) pollen phenology in two cities in the south (Houston) and north (Detroit) of conter-
minous United States. (B) Accuracy of inferring pollen phenology with the PlanetScope method, both in-sample (fitting model with data from all cities) and out-of-
sample (leave-one-out cross-validation), measured by Spearman correlation, indicating the level of significance (p < 0.05).

different scales, we calculated the Spearman correlation coefficients.

2.3.3. Inferring pollen phenology on the tree level

Following the calibration of green-up/down threshold and leaf-
pollen lag using NAB-derived city-level pollen phenology, we then
scaled back down to infer tree-level pollen phenology using
PlanetScope-derived green-up/down time tyreen—up/down () (Eqn. (3)).
We followed the same assumption used in the previous analysis that the
time of peak pollen emission and the time of green-up/down of a tree has
a time lag, optimized for each genus and city (Eqn. (8)).

tpollen = tgreenfup (/ég) + ggc (Equation 8)

We were able to map the inferred peak pollen emission time of trees
in a specific genus, city, and year tyuen. This allowed us to summarize
and visualize intra-urban variations in pollen phenology. Given that

10

NAB airborne concentration data used were collected at one station per
city, future validation of PlanetScope-derived pollen allergy landscape
with in-situ pollen phenology data at finer resolution is warranted.

All data analyses were performed in R v. 4.2.0 (R Core Team, 2024).

3. Results

3.1. PlanetScope-derived vegetative phenology correlates with flowering
phenology

We found significant correlations between PlanetScope-derived 50 %
green-up time and ground-observed flower onset time in wind-
pollinated species that were well-sampled (>50 records) across NEON
sites in conterminous United States (Fig. 7). There were significant
positive correlations in six out of eight species studied, including Acer
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Fig. 9. Distributions of PlanetScope-derived tree-level spring 50 % green-up time (representing leaf phenology) and peak pollen emission time (representing pollen

phenology) in Detroit in the spring of 2018. Colors indicate different genera.

pensylvanicum (striped maple), Acer rubrum (red maple), Carya ovata
(shagbark hickory), Liquidambar styraciflua (sweetgum), Quercus mon-
tana (chestnut oak), and Quercus rubra (red oak). For the other two
species, Juglans nigra (eastern American black walnut) and Quercus
stellata (post oak), we observed no significant correlation and a signifi-
cant negative correlation, respectively. Compared to strong correlation
across sites, the correlation was limited within sites, where phenological
variations are small. These correlations between Planet-derived green-
up and ground-observed flower onset were consistent with ground-
observed leaf onset and ground-observed flower onset (Fig. S8).

3.2. PlanetScope-derived vegetative phenology predicts city-level pollen
phenology in-sample and out-of-sample

We were able to infer city-level pollen phenology from PlanetScope-
derived tree-level vegetative phenology at a reasonable accuracy with
optimized green-up/down thresholds for each genus and further the
leaf-pollen lag for each city (Fig. 8, Figs. S9, S10, S11, S12). Among all
282 combinations of genus, city, and year, the in-sample accuracy of our
PlanetScope method achieved a Spearman correlation of 0.567 (median,
95 % interval: 0.125-0.845) and a nRMSE of 14.2 % (8.81 %-33.6 %). In
in-sample tests, 266 out of 282 (94.3 %) Spearman correlations were
statistically significant (p < 0.05). Across genera, the highest and lowest
Spearman correlations were seen in Quercus spp. (correlation: 0.751,
0.491-0.918) and in Juglans spp. (correlation: 0.454, 0.260-0.531); the
lowest and highest rRMSE were seen in Liquidambar spp. (nRMSE: 11.0
%, 8.68 %—12.7 %) and in Alnus spp. (nRMSE: 19.0 %, 10.7 %—23.9 %).

To test if our method can be generalized to locations without prior
pollen concentration data, we performed an out-of-sample test for
Quercus spp. that was present at seven cities, assuming a linear rela-
tionship between leaf-pollen lag and long-term climate of the city
(Fig. S7). Our PlanetScope method achieved an out-of-sample Spearman
correlation of 0.691 (0.337-0.910), with all 33 correlations being sta-
tistically significant, and an out-of-sample nRMSE of 14.5 % (9.82 %-—
36.0 %). Out-of-sample performances were comparable to in-sample
performances.

We also validated in-sample PlanetScope-inferred pollen phenology
with NPN-derived pollen phenology (Fig. S13). 95 out of 130 (73.1 %)
Spearman correlations were statistically significant (p < 0.05). The
median Spearman correlation was 0.479 (—0.297-0.795), lower than
the correlation with NAB-derived pollen phenology. Across genera, the
highest and lowest Spearman correlations with NPN data were seen in
Acer spp. (0.583, —0.0364-0.809) and in Salix spp. (0.242,
0.0371-0.664).
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3.3. PlanetScope-derived vegetative phenology informs within-city
variations in pollen phenology

Beyond the promise of extrapolating over a large spatial scale, we
also explored the potential of leveraging the fine spatial resolution of
PlanetScope time series to map the taxonomic and spatial details of
pollen concentration within cities. Although the studied genera are
similar in their time of leaf green-up, there was more heterogeneity in
their time of pollen emission (Fig. 9). In addition, both the distributions
of spring leaf green-up time and pollen emission time among trees of
interest in a city differ from often-assumed Gaussian kernels, charac-
terized by asymmetric peaks (Fig. 9).We mapped the inferred pollen
emission among trees, showing the pollen allergy landscape with spatial
variations within cities (Fig. 10).

4. Discussion

In this study, we developed a workflow to infer flowering and pollen
phenology from PlanetScope-derived vegetative phenology, validated
by in-situ phenological observations and measurements of airborne
pollen concentrations. On the tree level, PlanetScope-derived green-up
time was correlated with flower onset time. On the city level,
PlanetScope-derived green-up/down time at an optimized threshold and
shifted by a time lag can be used to characterize pollen phenology, with
the possibility to predict out-of-sample pollen phenology in cities
without pollen concentration observations. Further, we demonstrated
the power of PlanetScope time series in mapping the pollen allergy
landscape within cities. This study reveals the potential of high spatio-
temporal resolution remote sensing data for modeling the reproductive
phenology of wind-pollinated plants and mapping allergenic pollen ex-
posures on large scales and in great spatial details.

4.1. Relationship between vegetative and reproductive phenology

In both tree- and city-level analyses, we showed the link between
vegetative and reproductive phenology, either flower onset or pollen
emission. Similar relationships have been widely supported in previous
studies but on large spatial and taxonomic scales (Davies et al., 2013; Du
et al., 2017; Hpgda et al., 2002; Karlsen et al., 2009). However, this
relationship has rarely been examined on the individual tree level (but
see Primack, 1985). By comparing 50 % green-up time and flower onset
time, we showed that individual trees that green up earlier also tend to
flower early (Fig. 7), which may be attributed to extrinsic or intrinsic
factors.

The leaf-flower correlation can be explained by shared extrinsic
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Fig. 10. Maps of PlanetScope-derived pollen emission time in Detroit street trees in the spring of 2018, one for each genera. A brighter color indicates an earlier
estimated pollen emission time from an individual tree, showing spatial heterogeneity in pollen phenology within each city and genus.

environmental conditions, as spring leaf and flower phenology respond
to a common set of environmental cues (Cook et al., 2012). The optimal
timing of plant life-history events in temperate ecosystems has been
predicted to be constrained by the trade-off between harsh abiotic
conditions and high biotic competition (CaraDonna and Bain, 2016;
Iwasa and Levin, 1995; Post, 2013). This theory applies to both vege-
tative and reproductive phenology. The spring leaf-out of most
temperate woody plant species is a result of balancing the advantages of
a longer growing season with the risks from frost damage, mechanisti-
cally controlled by a suite of winter temperature, spring temperature,
and photoperiod cues (Polgar and Primack, 2011). Flowers, being more
sensitive than leaves to frost damage (CaraDonna and Bain, 2016), are
also highly controlled by similar environmental cues (Wang et al.,
2020). Shared climatic gradients can explain why remotely sensed land
surface phenology was correlated with flowering and pollen season
onset on a regional scale (Hpgda et al., 2002; Karlsen et al., 2009). On
the scale of individual trees, flowering and pollen phenology are likely
to both respond to shared microclimatic conditions, such as intra-urban
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temperature variation (D. S. W. Katz et al., 2019).

In addition to extrinsic factors, the leaf-flower correlation can be
further explained by plants’ distinct intrinsic attributes that determine
their phenology (Davies et al., 2013). On a species level, these could be
intrinsic species attributes such as life form, habit, dispersal mode and
pollination that determine species’ phenological responses to environ-
mental cues (Davies et al., 2013), which could explain why closely
related species tend to flower and leaf at similar times (i.e., phylogenetic
conservatism) (Davies et al., 2013; Du et al., 2017). On an individual
level, genetic differences among individuals might contribute to the
leaf-flower correlation.

By revealing a leaf-flower correlation that holds on a scale smaller
than previously known, we suggest the presence of fine-scale mecha-
nisms for this correlation, either microclimatic or genetic. Such insight
into the relationship between phenological events might inform the
integration of leaf phenology in the mechanistic model for flower and
pollen phenology.
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4.2. Detecting tree-level phenology with PlanetScope

Validated by in-situ phenological observations, we closely examined
the often-assumed potential of PlanetScope to detect tree-level
phenology (Cheng et al., 2020; Wu et al., 2021; Zhao et al., 2022).
Across NEON sites, PlanetScope-derived phenometrics captured
tree-level variations in the onset of maple and oak flowers. This result is
consistent with the finding that PlanetScope-derived phenometrics
explained tree-level variations in the leaf onset time of deciduous trees
across NEON sites (Zhao et al., 2022) and in leaf senescence time at a
PhenoCam site in a temperate forest (Wu et al., 2021).

Nevertheless, we noted that tree-level correlations were contributed
mainly by cross-site rather than within-site correlations (Fig. 7). The
weak within-site correlations were also observed in Zhao et al. (2022)
and were explained with both the uncertainty of extracting pheno-
metrics from PlanetScope time series and inconsistencies in field
phenological observations. An additional reason is that the correlations
between leaf onset time and flower onset time, a premise of our method,
might be weaker within the site compared to across sites (Fig. S7).

The ability to detect tree-level phenology using PlanetScope time
series is highly relevant from both a scientific and a practical standpoint.
On one hand, there are large variations between the phenology of trees
within a population, often with a conserved order of phenological events
among trees repeating from year to year, referred to as “phenological
rank” (Delpierre et al., 2017). Such tree-level phenological variations
could arise from multiple factors, including phenological variations in
phenotype, microclimate, and local resource availability (Vitasse et al.,
2021). PlanetScope-derived phenology will allow a better understand-
ing of ecological factors that underlie phenology. In practice, tree-level
variations in pollen phenology contribute to spatial heterogeneity of
pollen concentration within a city (D. S. W. Katz et al., 2019).

While current pollen concentration data and pollen models are largely
confined to regional or city scales, PlanetScope-derived pollen phenology
has the potential to empower process-guided pollen models with a higher
spatial resolution. Here, we demonstrate how our PlanetScope-derived
green-up time tuned to the optimal thresholds and lags, integrated with
street-tree inventory, allowed us to map the spatial heterogeneity of
PlanetScope-derived pollen emission time in a given city and time
(Fig. 10). Such maps showing intra-urban phenological variations can
inform decision-making such as time and location of outdoor activities.
Future validation with spatiotemporal pollen phenology data on sub-city
scales is warranted (Zapata-Marin et al., 2022).

The method we employed to extract tree-level phenology here using
coordinates of censused trees combined with PlanetScope is highly
scalable, but limitations remain given uncertainties in effective footprint
size and geolocation accuracy of PlanetScope pixels. Small trees (e.g.,
with a canopy diameter <3 m) might not be suitable to be extracted for
the phenological signal from PlanetScope. The size of trees could be
controlled if there exists information on tree diameter, height, or age in
tree inventories; alternatively, this could be achieved by segmentation of
tree canopy. Manual segmentation of tree crowns from drone imagery
has been used to delineate polygons to extract phenological signals from
PlanetScope (Wu et al., 2021; Zhao et al., 2022). Such tree crown seg-
mentation could be automated in the presence of co-registered airborne
RGB, LiDAR hyperspectral imagery, and high-quality training data
(Weinstein et al., 2021).

4.3. Using PlanetScope time series to inform pollen phenology

In the city-level analysis using pollen concentration data, we pro-
posed a novel workflow to predict pollen phenology from PlanetScope
time series. We compared the performance of our method to previous
machine learning models that do not explicitly account for phenology
and a study that directly accounts for flowering phenology. On the one
hand, our in-sample nRMSE of 14.2 % and out-of-sample nRMSE of 14.5
% (for Quercus spp. only) were highly competitive with machine
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learning models with nRMSE generally above 20 % (Seo et al., 2019;
Makra et al., 2023), even though our model had very few parameters
(Supplementary Note) and we did not include any environmental pre-
dictors to account for climate or weather changes. On the other hand,
our performance was comparable to or better than that of process-based
models. For example, the System for Integrated modeLling of Atmo-
spheric coMposition (SILAM), a widely-used process-based modeling
system in Europe (Sofiev et al., 2024), gave an nRMSE of approximately
20 % in pollen prediction (Sofiev et al., 2015). The Environment — High
Resolution Limited Area Model (Enviro-HIRLAM) predicted birch pollen
over Europe with RMSE of 1223.95-1639.47 pollen m ™2, translating to
nRMSE of 12.2-16.4 %, assuming a maximum pollen concentration of
10* pollen m~3 (Kurganskiy et al., 2020). Further, we outperformed a
previous study that predicted the same NAB pollen concentration
dataset with in-situ flower observations collected by community scientist
volunteers (Crimmins et al., 2023). We achieved higher and more sta-
tistically significant Spearman correlations in this study: 58 % and 94.3
% of Spearman correlations were statistically significant in Crimmins
et al. (2023) and this study, respectively; the median Spearman corre-
lation for Quercus spp. was 0.49 and 0.751 in Crimmins et al. (2023) and
this study, respectively. When benchmarked against an alternative data
source from citizen science (Fig. S13), the accuracy of our method is
slightly lower (73.1 % Spearman correlations being statistically signif-
icant), which might be due to the spatiotemporal biases of data contri-
bution. The competitive performance of our model demonstrated the
power of phenology data in pollen models and the great potential of
PlanetScope-derived phenology data.

The accuracy of our method arises from the ability of PlanetScope-
derived pollen phenology to explain intra-annual and inter-annual var-
iations in pollen concentration. By empirically inferring the continuous
change in pollen phenology in a year from the distribution of green-up/
down days among trees (Fig. 8), we moved beyond traditional pollen
phenology modeling that relies on annual phenometrics (Clark et al.,
2014). Even without explicitly accounting for inter-annual variations in
temperature, the PlanetScope method was able to explain some
inter-annual variations in pollen phenology with the different times and
distributions of green-up/down dates (Fig. 8, Fig. S10). This finding has
previously been shown on a coarser resolution, with a remotely-sensed
green-up date explaining inter-annual variations in ground-observed
flowering dates (Delbart et al., 2015).

Our model was a simplified one, overlooking details such as differ-
ential responses of vegetative and reproductive phenology to the envi-
ronment (Geng et al., 2022) and non-phenological factors that influence
pollen concentration, such as pollen dispersion (Latorre, 1999; Robi-
chaud and Comtois, 2021; Zhu et al., 2024). Nevertheless, this model
paves the way for building process-guided pollen models with tree-level
vegetative and reproductive phenology as key processes (Scheifinger
et al., 2013; D. S. W. Katz et al., 2023).

The out-of-sample accuracy of PlanetScope-derived pollen
phenology of oak trees (Fig. 8, Fig. S11) suggested the possibility of
predicting pollen concentration even at locations with limited prior
observations. We suggest four enhancements before operationalizing the
proposed workflow to inform decision-making in public health. First, in
addition to the tree-level validation of the flowering phenology we
presented, more fine-scale ground truths for pollen phenology are
needed (Katz and Batterman, 2020). Examples are newly initiated
community science data collection of pollen phenology (D. S. W. Katz
et al.,, 2023) and within-city pollen concentration data (Weinberger
et al., 2018). Second, our study was partly limited by the number of
cities with publicly available street inventories. To ensure a sufficient
number of cities for extrapolation, we were not able to perform
out-of-sample tests with genera other than Quercus spp. Further model
tuning and validation will benefit from obtaining street tree inventories
from more cities. Apart from direct requests from cities, operationalized
identification of trees with remote sensing data (Morueta-Holme et al.,
2024), such as the Auto Arborist dataset (Beery et al., 2022), may be
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particularly efficient. Third, by focusing on phenology, our method
addressed the relative change of pollen concentration but not the ab-
solute magnitude of pollen peaks, which can be achieved by accounting
for the total pollen production per tree and abundance and distribution
of the taxa of interest (D. S. W. Katz and Carey, 2014; D. S. W. Katz et al.,
2020; Zhang and Steiner, 2022). Last, although this study retrospec-
tively demonstrates the inference of pollen phenology, this method can
be combined with accurate forecasting of vegetative phenology (Song
et al., 2023; Taylor and White, 2020) to achieve near-term predictions
for the early warning of pollen season. With around 60 pollen moni-
toring stations around the US but far more widespread public health
concerns on pollen allergy, this study provides the possibility of more
spatially equitable access to pollen level forecasting.

5. Conclusions

We showed that high spatiotemporal resolution remote sensing data
from PlanetScope is highly promising in inferring flowering and pollen
phenology from vegetative phenology. On the tree level, PlanetScope-
derived green-up time had a significant positive correlation with the
field-observed flower onset time of six out of eight wind-pollinated
species in a large observatory network (Section 3.1). We upscaled
tree-level PlanetScope-derived vegetative phenology to the city level
and accurately inferred pollen phenology, calibrated by a conterminous-
scale high-quality dataset for airborne pollen concentration (Section
3.2). This empirical method of inference achieved a median Spearman
correlation of 0.567 and a nRMSE of 14.2 % across 14 wind-pollinated
genera and seven cities of interest. For Quercus spp. (oak) that was
present in all seven cities; our model achieved high out-of-sample ac-
curacy (Spearman correlation: 0.691, nRMSE: 14.5 %) comparable with
in-sample accuracy (Spearman correlation: 0.751, nRMSE: 13.5 %). Our
proposed method is promising to describe and predict the pollen
phenology of deciduous wind-pollinated tree taxa at locations without
prior pollen concentration data. We further demonstrate how
PlanetScope-derived vegetative phenology can be used to map varia-
tions in pollen phenology within cities (a pollen allergy landscape)
(Section 3.3), calling for future validation with fine-grained in-situ data.
Using PlanetScope time series, our findings pave the way for the
development of generalizable and refined process-based pollen models
to inform decision-making in public health.
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